Fundamental groups of algebraic varieties in positive characteristic

Adrian Langer

1 Warsaw University, Poland
2 IMPAN, Poland

Frobenius splitting, 2010
Outline

1. Known fundamental groups
 - Different approaches to algebraic fundamental groups
 - Characterizations of representations of $\pi^S_1(X, x)$

2. Properties of the S-fundamental group scheme
 - First properties
 - Lefschetz type theorems
 - π^S_1 for a product of varieties
 - Computation of the S-fundamental group
Outline

1. Known fundamental groups
 - Different approaches to algebraic fundamental groups
 - Characterizations of representations of $\pi_1^S(X, x)$

2. Properties of the S-fundamental group scheme
 - First properties
 - Lefschetz type theorems
 - π_1^S for a product of varieties
 - Computation of the S-fundamental group
Grothendieck’s fundamental group

X a connected scheme
$x : \text{Spec } k \rightarrow X$ a geometric point
T_x the fiber functor on the category of finite étale covers $Y \rightarrow X$ with objects $T_x(Y) = Y_x$

Definition

“Étale fundamental group” $\pi_1(X, x) = \text{the automorphism group of } T_x$.

Finite quotients of $\pi_1(X, x) = \text{finite étale Galois covers of } X$

X/\mathbb{C}

$\pi_1(X, x) = \hat{\pi}_1^\text{top}(X, x)$
Grothendieck’s fundamental group

\[X \text{ a connected scheme} \]
\[x : \text{Spec } k \rightarrow X \text{ a geometric point} \]
\[T_x \text{ the fiber functor on the category of finite étale covers } Y \rightarrow X \]
with objects \(T_x(Y) = Y_x \)

Definition

“Étale fundamental group” \(\pi_1(X, x) = \) the automorphism group of \(T_x \).

Finite quotients of \(\pi_1(X, x) = \) finite étale Galois covers of \(X \)

\[X/\mathbb{C} \]
\[\pi_1(X, x) = \hat{\pi}_1^{\text{top}}(X, x) \]
Grothendieck’s fundamental group

\(X \) a connected scheme
\(x : \text{Spec} \ k \rightarrow X \) a geometric point
\(T_x \) the fiber functor on the category of finite étale covers \(Y \rightarrow X \)
with objects \(T_x(Y) = Y_x \)

Definition

“Étale fundamental group” \(\pi_1(X, x) = \) the automorphism group of \(T_x \).

Finite quotients of \(\pi_1(X, x) = \) finite étale Galois covers of \(X \)

\(X/\mathbb{C} \)

\[\pi_1(X, x) = \hat{\pi}_1^{\text{top}}(X, x) \]
Tannaka duality

Neutral Tannaka category = (\(\mathcal{A}, \otimes, T : \mathcal{A} \to \text{Vect}_k, A\)).

\(\mathcal{A}\) an abelian category
\(\otimes\) tensor product
\(T : \mathcal{A} \to \text{Vect}_k\) a fiber functor
\(A \in \text{Ob} \mathcal{A}\) a trivial object

Tannaka duality theorem

Neutral Tannaka category (\(\mathcal{A}, \otimes, T : \mathcal{A} \to \text{Vect}_k, A\)) = category of representations of an affine \(k\)-group scheme \(G\).

\(G\) is called Tannaka dual to (\(\mathcal{A}, \otimes, T : \mathcal{A} \to \text{Vect}_k, A\)).
Tannaka duality

Neutral Tannaka category = \((\mathcal{A}, \otimes, T : \mathcal{A} \to \text{Vect}_k, A)\).

\(\mathcal{A}\) an abelian category
\(\otimes\) tensor product
\(T : \mathcal{A} \to \text{Vect}_k\) a fiber functor
\(A \in \text{Ob}\mathcal{A}\) a trivial object

Tannaka duality theorem

Neutral Tannaka category \((\mathcal{A}, \otimes, T : \mathcal{A} \to \text{Vect}_k, A)\) = category of representations of an affine \(k\)-group scheme \(G\).

\(G\) is called *Tannaka dual to* \((\mathcal{A}, \otimes, T : \mathcal{A} \to \text{Vect}_k, A)\).
Tannaka duality

Neutral Tannaka category $= (\mathcal{A}, \otimes, T: \mathcal{A} \to \text{Vect}_k, A)$.

\mathcal{A} an abelian category
\otimes tensor product
$T: \mathcal{A} \to \text{Vect}_k$ a fiber functor
$A \in \text{Ob} \mathcal{A}$ a trivial object

Tannaka duality theorem

Neutral Tannaka category $(\mathcal{A}, \otimes, T: \mathcal{A} \to \text{Vect}_k, A) = \text{category of representations of an affine } k\text{-group scheme } G.$

G is called Tannaka dual to $(\mathcal{A}, \otimes, T: \mathcal{A} \to \text{Vect}_k, A)$.
Tannakian approach to fundamental group schemes

X proper integral k-scheme, $k = \bar{k}$

Vector bundle E is finite if $\exists f \neq g \in k[x]$ s.t. $f(E) = g(E)$

Essentially finite = subquotient of finite

Definition

Nori’s fundamental group scheme $\pi_1^N(X, x)$ is the group scheme Tannaka dual to the neutral Tannaka category of essentially finite vector bundles on X

$\pi_1^N(X, x)$ classifies torsors under arbitrary finite group schemes
X proper integral k-scheme, $k = \overline{k}$

Vector bundle E is finite if $\exists f \neq g \in k[x]$ s.t. $f(E) = g(E)$

essentially finite = subquotient of finite

Definition

Nori’s fundamental group scheme $\pi_1^N(X, x)$ is the group scheme Tannaka dual to the neutral Tannaka category of essentially finite vector bundles on X

$\pi_1^N(X, x)$ classifies torsors under arbitrary finite group schemes
X proper integral k-scheme, $k = \overline{k}$

Vector bundle E is finite if $\exists f \neq g \in k[x]$ s.t. $f(E) = g(E)$

essentially finite = subquotient of finite

Definition

Nori’s fundamental group scheme $\pi^N_1(X, x)$ is the group scheme Tannaka dual to the neutral Tannaka category of essentially finite vector bundles on X

$\pi^N_1(X, x)$ classifies torsors under arbitrary finite group schemes
Tannakian approach to fundamental group schemes

X proper integral k-scheme, $k = \overline{k}$

Vector bundle E is \textit{finite} if $\exists f \neq g \in k[x]$ s.t. $f(E) = g(E)$

\textit{Essentially finite} = subquotient of finite

\textbf{Definition}

\textit{Nori’s fundamental group scheme} $\pi^N_1(X, x)$ is the group scheme Tannaka dual to the neutral Tannaka category of essentially finite vector bundles on X

$\pi^N_1(X, x)$ classifies torsors under arbitrary finite group schemes
Comparison of Grothendieck’s and Nori’s constructions:

- char 0: $\pi_1(X, x) = \pi_1^N(X, x)$
- char $p > 0$: $\pi_1(X, x)$ group of k-points of the maximal pro-étale quotient of $\pi_1^N(X, x)$
S-fundamental group scheme

\[E \text{ numerically flat} \iff E \text{ locally free, } E, E^* \text{ nef} \]

\(\mathcal{C}^{\text{nf}}(X) \) numerically flat vector bundles

\(x \in X(k) \) fixed

\(T_x : \mathcal{C}^{\text{nf}}(X) \to \text{Vect}_k \) sends \(E \) to the fiber \(E(x) \).

Definition

S-fundamental group scheme \(\pi_1^S(X, x) \) is the group scheme Tannaka dual to the neutral Tannaka category

\((\mathcal{C}^{\text{nf}}(X), \otimes, T_x, \mathcal{O}_X) \).

\(\pi_1^N(X, x) \) is a pro-finite completion of \(\pi_1^S(X, x) \).
S-fundamental group scheme

\[E \text{ numerically flat} \iff E \text{ locally free, } E, E^* \text{ nef} \]

\(C^{\text{nf}}(X) \) numerically flat vector bundles

\(x \in X(k) \) fixed

\(T_x : C^{\text{nf}}(X) \to \text{Vect}_k \) sends \(E \) to the fiber \(E(x) \).

Definition

The *S-fundamental group scheme* \(\pi_1^S(X, x) \) is the group scheme Tannaka dual to the neutral Tannaka category

\[(C^{\text{nf}}(X), \otimes, T_x, \mathcal{O}_X). \]

\(\pi_1^N(X, x) \) is a pro-finite completion of \(\pi_1^S(X, x) \).
S-fundamental group scheme

\[E \text{ numerically flat} \iff E \text{ locally free, } E, E^* \text{ nef} \]

\[C^{\text{nf}}(X) \text{ numerically flat vector bundles} \]

\[x \in X(k) \text{ fixed} \]

\[T_x : C^{\text{nf}}(X) \rightarrow \text{Vect}_k \text{ sends } E \text{ to the fiber } E(x). \]

Definition

S-fundamental group scheme \(\pi_1^S(X, x) \) is the group scheme Tannaka dual to the neutral Tannaka category

\[(C^{\text{nf}}(X), \otimes, T_x, \mathcal{O}_X). \]

\(\pi_1^N(X, x) \) is a pro-finite completion of \(\pi_1^S(X, x) \).
S-fundamental group scheme

\[E \text{ numerically flat } \iff E \text{ locally free, } E, E^* \text{ nef} \]

\[\mathcal{C}^{\text{nf}}(X) \text{ numerically flat vector bundles} \]

\[x \in X(k) \text{ fixed} \]

\[T_x : \mathcal{C}^{\text{nf}}(X) \to \text{Vect}_k \text{ sends } E \text{ to the fiber } E(x). \]

Definition

\textit{S-fundamental group scheme} \(\pi_1^S(X, x) \) is the group scheme Tannaka dual to the neutral Tannaka category

\[(\mathcal{C}^{\text{nf}}(X), \otimes, T_x, \mathcal{O}_X). \]

\(\pi_1^N(X, x) \) is a pro-finite completion of \(\pi_1^S(X, x) \)
Motivation: Simpson’s non-abelian Hodge theory

X/\mathbb{C} smooth projective

- Complex representations of $\pi_{1}^{\text{top}}(X, x) = \text{semistable Higgs bundles with vanishing Chern classes}$
- Unitary representations of $\pi_{1}^{\text{top}}(X, x) = \text{semistable bundles with vanishing Chern classes}$

In other words: $\pi_{1}^{S}(X, x)$ is a pro-unitary completion of $\pi_{1}^{\text{top}}(X, x)$
Motivation: Simpson’s non-abelian Hodge theory

\(X/\mathbb{C} \) smooth projective

- Complex representations of \(\pi_1^{\text{top}}(X, x) = \) semistable Higgs bundles with vanishing Chern classes
- Unitary representations of \(\pi_1^{\text{top}}(X, x) = \) semistable bundles with vanishing Chern classes

In other words: \(\pi_1^S(X, x) \) is a pro-unitary completion of \(\pi_1^{\text{top}}(X, x) \)
Motivation: Simpson’s non-abelian Hodge theory

\[\mathcal{X}/\mathbb{C} \text{ smooth projective} \]

- Complex representations of \(\pi_{1}^{\text{top}}(X, x) = \) semistable Higgs bundles with vanishing Chern classes
- Unitary representations of \(\pi_{1}^{\text{top}}(X, x) = \) semistable bundles with vanishing Chern classes

In other words: \(\pi_{1}^{S}(X, x) \) is a pro-unitary completion of \(\pi_{1}^{\text{top}}(X, x) \)
Local freeness of semistable sheaves.

Theorem

Let X/k be smooth, H ample, E a strongly H-semistable, torsion free with vanishing Chern classes. Then E locally free and

$$0 = E_0 \subset E_1 \subset ... \subset E_m = E,$$

E_i/E_{i-1} stable, strongly semistable, locally free with vanishing Chern classes

For $n \gg 0$

$$0 = E'_0 \subset E'_1 \subset ... \subset E'_{m'} = (F^n)^*E,$$

E'_i/E'_{i-1} strongly stable, locally free with vanishing Chern classes.
Local freeness of semistable sheaves.

Theorem

Let X/k be smooth, H ample, E a strongly H-semistable, torsion free with vanishing Chern classes. Then E locally free and

$$0 = E_0 \subset E_1 \subset \ldots \subset E_m = E,$$

E_i/E_{i-1} stable, strongly semistable, locally free with vanishing Chern classes.

For $n \gg 0$

$$0 = E'_0 \subset E'_1 \subset \ldots \subset E'_{m'} = (F^n)^* E,$$

E'_i/E'_{i-1} strongly stable, locally free with vanishing Chern classes.
Local freeness of semistable sheaves.

Theorem

Let X/k be smooth, H ample, E a strongly H-semistable, torsion free with vanishing Chern classes. Then E locally free and

$$0 = E_0 \subset E_1 \subset \ldots \subset E_m = E,$$

E_i/E_{i-1} stable, strongly semistable, locally free with vanishing Chern classes

For $n \gg 0$

$$0 = E'_0 \subset E'_1 \subset \ldots \subset E'_m = (F^n)^*E,$$

E'_i/E'_{i-1} strongly stable, locally free with vanishing Chern classes.
Theorem

X/k smooth, H ample, E a strongly H-semistable, torsion free with vanishing Chern classes. Then E locally free and

$0 = E_0 \subset E_1 \subset \ldots \subset E_m = E,$

E_i / E_{i-1} stable, strongly semistable, locally free with vanishing Chern classes

For $n \gg 0$

$0 = E'_0 \subset E'_1 \subset \ldots \subset E'_{m'} = (F^n)^* E,$

E'_i / E'_{i-1} strongly stable, locally free with vanishing Chern classes.
Theorem

X smooth, projective. The following are equivalent for a coherent sheaf E:

1. E locally free and numerically flat,
2. E locally free, nef, degree 0 for some ample H,
3. E reflexive, strongly H-semistable, $\text{ch}_1(E) \cdot H^{d-1} = 0$ and $\text{ch}_2(E) \cdot H^{d-2} = 0$,
4. E torsion free, strongly H-semistable, $\chi(E) = r \chi(O_X)$, $\text{ch}_1(E) \cdot H^{d-1} = 0$ and $\text{ch}_2(E) \cdot H^{d-2} = 0$.

Adrian Langer

Fundamental groups of algebraic varieties in positive characteristic
Numerically flat vis-à-vis semistable

Theorem

Let X be smooth, projective. The following are equivalent for a coherent sheaf E:

1. E locally free and numerically flat,
2. E locally free, nef, degree 0 for some ample H,
3. E reflexive, strongly H-semistable, $\text{ch}_1(E) \cdot H^{d-1} = 0$ and $\text{ch}_2(E) \cdot H^{d-2} = 0$,
4. E torsion free, strongly H-semistable, $\chi(E) = r \chi(O_X)$, $\text{ch}_1(E) \cdot H^{d-1} = 0$ and $\text{ch}_2(E) \cdot H^{d-2} = 0$.
Numerically flat vis-à-vis semistable

Theorem

For a smooth, projective variety X, the following are equivalent for a coherent sheaf E:

1. E is locally free and numerically flat,
2. E is locally free, nef, and degree 0 for some ample H,
3. E is reflexive, strongly H-semistable, $\text{ch}_1(E) \cdot H^{d-1} = 0$ and $\text{ch}_2(E) \cdot H^{d-2} = 0$,
4. E is torsion free, strongly H-semistable, $\chi(E) = r \chi(O_X)$, $\text{ch}_1(E) \cdot H^{d-1} = 0$ and $\text{ch}_2(E) \cdot H^{d-2} = 0$.
Numerically flat vis-à-vis semistable

Theorem

X smooth, projective. The following are equivalent for a coherent sheaf E:

1. E locally free and numerically flat,
2. E locally free, nef, degree 0 for some ample H,
3. E reflexive, strongly H-semistable, $\text{ch}_1(E) \cdot H^{d-1} = 0$ and $\text{ch}_2(E) \cdot H^{d-2} = 0$,
4. E torsion free, strongly H-semistable, $\chi(E) = r \chi(\mathcal{O}_X)$, $\text{ch}_1(E) \cdot H^{d-1} = 0$ and $\text{ch}_2(E) \cdot H^{d-2} = 0$.

Adrian Langer

Fundamental groups of algebraic varieties in positive characteristic
Theorem

Let X be smooth, projective. The following are equivalent for a coherent sheaf E:

1. E locally free and numerically flat,
2. E locally free, nef, degree 0 for some ample H,
3. E reflexive, strongly H-semistable, $\chi_1(E) \cdot H^{d-1} = 0$ and $\chi_2(E) \cdot H^{d-2} = 0$,
4. E torsion free, strongly H-semistable, $\chi(E) = r \chi(\mathcal{O}_X)$, $\chi_1(E) \cdot H^{d-1} = 0$ and $\chi_2(E) \cdot H^{d-2} = 0$.

Adrian Langer
Proof of the theorem

- $2 \Rightarrow 3$ follows from positivity of Chern classes for ample bundles (Fulton–Lazarsfeld)
- $4 \Rightarrow 1$ follows from boundedness of semistable sheaves with fixed numerical invariants
Proof of the theorem

2 \Rightarrow 3 follows from positivity of Chern classes for ample bundles (Fulton–Lazarsfeld)

4 \Rightarrow 1 follows from boundedness of semistable sheaves with fixed numerical invariants
Proof of the theorem

- $2 \implies 3$ follows from positivity of Chern classes for ample bundles (Fulton–Lazarsfeld)
- $4 \implies 1$ follows from boundedness of semistable sheaves with fixed numerical invariants
Outline

1. Known fundamental groups
 - Different approaches to algebraic fundamental groups
 - Characterizations of representations of $\pi_1^S(X, x)$

2. Properties of the S-fundamental group scheme
 - First properties
 - Lefschetz type theorems
 - π_1^S for a product of varieties
 - Computation of the S-fundamental group
• $f : X \rightarrow Y$ flat surjective, $f_* O_X = O_X \Rightarrow \pi^S_1(X, x) \rightarrow \pi^S_1(Y, y)$ faithfully flat
• $\pi^S_1(X, x) = 0$ for homogeneous X
• bad base change: $\pi^S_1(X_K, x) \neq \pi^S_1(X_k, x) \times_k K$
• Hogadi–Mehta 2010: $\pi^S_1(X, x)$ is a birational invariant
\begin{itemize}
 \item $f : X \rightarrow Y$ flat surjective, $f_* \mathcal{O}_X = \mathcal{O}_X \Rightarrow \pi^S_1(X, x) \rightarrow \pi^S_1(Y, y)$ faithfully flat
 \item $\pi^S_1(X, x) = 0$ for homogeneous X
 \item bad base change: $\pi^S_1(X_K, x) \neq \pi^S_1(X_k, x) \times_k K$
 \item \textit{Hogadi–Mehta 2010}: $\pi^S_1(X, x)$ is a birational invariant
\end{itemize}
Known fundamental groups
Properties of the S-fundamental group scheme
Summary

First properties
Lefschetz type theorems
π_1^S for a product of varieties
Computation of the S-fundamental group

- $f : X \to Y$ flat surjective, $f_* \mathcal{O}_X = \mathcal{O}_X \Rightarrow$
 $\pi_1^S(X, x) \to \pi_1^S(Y, y)$ faithfully flat
- $\pi_1^S(X, x) = 0$ for homogeneous X
- bad base change: $\pi_1^S(X_K, x) \neq \pi_1^S(X_k, x) \times_k K$
- Hogadi–Mehta 2010: $\pi_1^S(X, x)$ is a birational invariant
First properties

- $f : X \to Y$ flat surjective, $f_* \mathcal{O}_X = \mathcal{O}_X \Rightarrow \pi^S_1(X, x) \to \pi^S_1(Y, y)$ faithfully flat
- $\pi^S_1(X, x) = 0$ for homogeneous X
- bad base change: $\pi^S_1(X_K, x) \neq \pi^S_1(X_k, x) \times_k K$

- Hogadi–Mehta 2010: $\pi^S_1(X, x)$ is a birational invariant
Known fundamental groups
Properties of the S-fundamental group scheme
Summary

First properties
Lefschetz type theorems
\(\pi_1^S \) for a product of varieties
Computation of the S-fundamental group

- \(f : X \to Y \) flat surjective, \(f_* \mathcal{O}_X = \mathcal{O}_X \) \(\Rightarrow \)
 \(\pi_1^S(X, x) \to \pi_1^S(Y, y) \) faithfully flat
- \(\pi_1^S(X, x) = 0 \) for homogeneous \(X \)
- bad base change: \(\pi_1^S(X_K, x) \neq \pi_1^S(X_k, x) \times_k K \)
- \textit{Hogadi–Mehta} 2010: \(\pi_1^S(X, x) \) is a birational invariant
Vanishing theorems

X of dimension d, D, H ample divisors, $T_X(\alpha H)$ globally generated, $pD - \alpha H$ ample

- If $d \geq 2$ then for any $E \in C^{\rm{nf}}(X)$

$$H^1(X, E(-D)) = 0.$$

- If $d \geq 3$ and

$$DH^{d-1} > \max \left(\alpha H^d, \frac{(d + 1)\alpha H^d - K_X H^{d-1}}{p} \right)$$

then $H^2(X, E(-D)) = 0$.

Adrian Langer

Fundamental groups of algebraic varieties in positive characteristic
Vanishing theorems

Let X be a variety of dimension d, D, H ample divisors, $T_X(\alpha H)$ globally generated, $pD - \alpha H$ ample.

1. If $d \geq 2$ then for any $E \in C^{\text{nf}}(X)$
 \[H^1(X, E(-D)) = 0. \]

2. If $d \geq 3$ and
 \[DH^{d-1} > \max \left(\alpha H^d, \frac{(d + 1)\alpha H^d - K_X H^{d-1}}{p} \right) \]
 then $H^2(X, E(-D)) = 0$.

Adrian Langer

Fundamental groups of algebraic varieties in positive characteristic
Vanishing theorems

X of dimension d, D, H ample divisors, $T_X(\alpha H)$ globally generated, $pD - \alpha H$ ample

- If $d \geq 2$ then for any $E \in C^{\text{nf}}(X)$
 \[
 H^1(X, E(-D)) = 0.
 \]

- If $d \geq 3$ and
 \[
 DH^{d-1} > \max \left(\alpha H^d, \frac{(d + 1)\alpha H^d - K_X H^{d-1}}{p} \right)
 \]
 then $H^2(X, E(-D)) = 0$.

Adrian Langer

Fundamental groups of algebraic varieties in positive characteristic
First Lefschetz theorem

Theorem

Let $D \subset X$ be an ample smooth effective divisor. If $d = \dim X \geq 2$ and

$$DH^{d-1} > \mu_{\max}(\Omega_X)$$

then $\pi_1^S(D, x) \to \pi_1^S(X, x)$ is faithfully flat.

Caution: Without assumption on DH^{d-1} theorem is false.
First Lefschetz theorem

Theorem

\[D \subset X \text{ ample smooth effective divisor. If } d = \dim X \geq 2 \text{ and } \]

\[DH^{d-1} > \mu_{\text{max}}(\Omega_X) \]

then \(\pi_1^S(D, x) \rightarrow \pi_1^S(X, x) \) is faithfully flat.

Caution: without assumption on \(DH^{d-1} \) theorem is false
Second Lefschetz theorem

Theorem

Assume $d \geq 3$ and $T_X(\alpha H)$ globally generated for some $\alpha \geq 0$, $D \subset X$ smooth effective, $D - \alpha H$ ample.

If

$$DH^{d-1} > \max \left(p\alpha H^d, (d + 1)\alpha H^d - K_X H^{d-1} \right)$$

then $\pi_1^S(D, x) \simeq \pi_1^S(X, x)$.

Theorem

Assume $d \geq 3$ and $T_X(\alpha H)$ globally generated for some $\alpha \geq 0$, $D \subset X$ smooth effective, $D - \alpha H$ ample.

If

$$DH^{d-1} > \max \left(p\alpha H^d, (d + 1)\alpha H^d - K_X H^{d-1} \right)$$

then $\pi_1^S(D, x) \simeq \pi_1^S(X, x)$.
Vanishing theorems in presence of lifting

X d-dimensional with lifting to $W_2(k)$.

Deligne–Illusie implies:

Theorem

If D ample, $E \in C^\text{nf}(X)$. Then

$$H^i(X, E(-D) \otimes \Omega^i_X) = 0$$

if $i + j < \min(p, d)$.
Lefschetz theorems in presence of lifting

Theorem

\(D \) smooth ample effective divisor on \(X \). \(X \) has a lifting to \(W_2(k) \)

1. If \(\dim X \geq 2 \) then \(\pi_1^S(D, x) \to \pi_1^S(X, x) \) is faithfully flat.

2. If \(\dim X \geq 3 \) and \(p \geq 3 \) then \(\pi_1^S(D, x) \cong \pi_1^S(X, x) \).
Theorem

Let X, Y be complete varieties. Then

$$\pi^S_1(X \times_k Y) \simeq \pi^S_1(X) \times_k \pi^S_1(Y)$$

For Nori’s fundamental group scheme:

Mehta–Subramanian 2002
Theorem

X, Y be complete varieties. Then

$$
\pi_1^S(X \times_k Y) \cong \pi_1^S(X) \times_k \pi_1^S(Y)
$$

For Nori’s fundamental group scheme:

Mehta–Subramanian 2002
Theorem

Let X, Y be smooth projective curves, and F be locally free on $X \times Y$. Assume the following:

- $\forall x \in X \ F_x$ is semistable
- F is numerically trivial

Then:

- $\forall y_1, y_2 \in Y \ F_{y_1} \simeq F_{y_2}$
- $\forall x \in X \ F_x$ are S-equivalent
Theorem

Let X, Y be smooth projective curves, F be a locally free sheaf on $X \times Y$. Assume

- $\forall x \in X \ F_x$ is semistable
- F is numerically trivial

Then:

- $\forall y_1, y_2 \in Y \ F_{y_1} \cong F_{y_2}$
- $\forall x \in X \ F_x$ are S-equivalent
Abelian part of π^S_1

In positive characteristic:

$$\pi^S_{ab}(X, x) \simeq \lim \leftarrow \hat{G} \times \text{Diag}((\text{Pic}^\tau X)_{\text{red}}),$$

In characteristic zero:

$$\pi^S_{ab}(X, x) \simeq H^1(X, \mathcal{O}_X)^* \times \text{Diag}(\text{Pic}^\tau X).$$
Abelian part of π_1^S

In positive characteristic:

$$\pi_{ab}^S(X, x) \simeq \varprojlim \mathcal{G} \times \text{Diag}((\text{Pic}^\tau X)_{\text{red}}),$$

In characteristic zero:

$$\pi_{ab}^S(X, x) \simeq H^1(X, \mathcal{O}_X)^* \times \text{Diag}(\text{Pic}^\tau X).$$
Albanese morphism

\[\text{alb}_X : X \to \text{Alb } X \text{ the Albanese morphism} \]

\[0 \to \lim_{G \subset \text{Pic}^0 X} \frac{G}{G_{\text{red}}} \times \text{Diag}(\text{NS}(X)_{\text{tors}}) \to \pi^S_{\text{ab}}(X) \to \pi^S_1(\text{Alb } X) \to 0 \]
Computation for simply connected varieties

Esnault–Mehta: If $\pi_1^N(X, x) = 0$ then $\pi_1^S(X, x) = 0$.

Theorem

Assume $\pi_1^{et}(X, x) = 0$, E rank r numerically flat. Then $\exists n \geq 0$ such that $(F_X^n)^* E \simeq \mathcal{O}_X^r$.

Corollary

If $\pi_1^{et}(X, x) = 0$ then $\pi^S(X, x) \simeq \pi_1^N(X, x)$.
Esnault–Mehta: If $\pi_1^N(X, x) = 0$ then $\pi_1^S(X, x) = 0$.

Theorem

Assume $\pi_1^{et}(X, x) = 0$, E rank r numerically flat. Then $\exists n \geq 0$ such that $(F^n_X)^* E \simeq \mathcal{O}_X^r$.

Corollary

If $\pi_1^{et}(X, x) = 0$ then $\pi^S(X, x) \simeq \pi_1^N(X, x)$.
Computation for simply connected varieties

Esnault–Mehta: If $\pi_1^N(X, x) = 0$ then $\pi_1^S(X, x) = 0$.

Theorem

Assume $\pi_1^{\text{et}}(X, x) = 0$, E rank r numerically flat. Then $\exists n \geq 0$ such that $(F_X^n)^* E \simeq \mathcal{O}_X^r$.

Corollary

If $\pi_1^{\text{et}}(X, x) = 0$ then $\pi^S(X, x) \simeq \pi_1^N(X, x)$.
There are interesting fundamental group schemes generalizing Grothendieck’s fundamental group.

S-fundamental group scheme encodes properties of strongly semistable bundles with vanishing Chern classes.

Outlook and possible applications in positive characteristic:

- Existence of a non-abelian Hodge theory
- Characterization of varieties with nef tangent bundle
There are interesting fundamental group schemes generalizing Grothendieck’s fundamental group.

S-fundamental group scheme encodes properties of strongly semistable bundles with vanishing Chern classes.

Outlook and possible applications in positive characteristic:
- Existence of a non-abelian Hodge theory
- Characterization of varieties with nef tangent bundle
There are interesting fundamental group schemes generalizing Grothendieck’s fundamental group.

S-fundamental group scheme encodes properties of strongly semistable bundles with vanishing Chern classes

Outlook and possible applications in positive characteristic:

- Existence of a non-abelian Hodge theory
- Characterization of varieties with nef tangent bundle
Summary

- There are interesting fundamental group schemes generalizing Grothendieck’s fundamental group.
- S-fundamental group scheme encodes properties of strongly semistable bundles with vanishing Chern classes.

Outlook and possible applications in positive characteristic:
- Existence of a non-abelian Hodge theory
- Characterization of varieties with nef tangent bundle
For Further Reading

A. Langer

On the S-fundamental group scheme.

A. Langer

On the S-fundamental group scheme II.
preprint.

H. Esnault, V. Mehta

Simply connected projective manifolds in characteristic $p > 0$ have no nontrivial stratified bundles,
to appear in *Inv. Math.*