‘Frobenius Splittings’ conference

‘Graded annihilators and tight closure’

Rodney Y. Sharp

(University of Sheffield)
Notation

Throughout, R denotes a commutative Noetherian ring of prime characteristic p, and $f : R \longrightarrow R$ is the Frobenius homomorphism, so that $f(r) = r^p$ for all $r \in R$.
Notation

Throughout, R denotes a commutative Noetherian ring of prime characteristic p, and $f : R \rightarrow R$ is the Frobenius homomorphism, so that $f(r) = r^p$ for all $r \in R$.

The notation ‘(R, m) is local’ will mean that m is the unique maximal ideal of R. Also, a will denote an ideal of R, and M will denote an R-module.
Notation

Throughout, R denotes a commutative Noetherian ring of prime characteristic p, and $f : R \to R$ is the Frobenius homomorphism, so that $f(r) = r^p$ for all $r \in R$.

The notation ‘(R, m) is local’ will mean that m is the unique maximal ideal of R. Also, \mathfrak{a} will denote an ideal of R, and M will denote an R-module.

The Frobenius skew polynomial ring over R is $R[x, f] := \bigoplus_{n \geq 0} R x^n$ (freely generated as left R-module by the powers $(x^n)_{n \geq 0}$ of the variable x) with $xr = r^p x$ for all $r \in R$.
Notation

Throughout, R denotes a commutative Noetherian ring of prime characteristic p, and $f : R \rightarrow R$ is the Frobenius homomorphism, so that $f(r) = r^p$ for all $r \in R$.

The notation ‘(R, \mathfrak{m}) is local’ will mean that \mathfrak{m} is the unique maximal ideal of R. Also, \mathfrak{a} will denote an ideal of R, and M will denote an R-module.

The **Frobenius skew polynomial ring** over R is $R[x, f] := \bigoplus_{n \geq 0} R x^n$ (freely generated as left R-module by the powers $(x^n)_{n \geq 0}$ of the variable x) with $xr = r^p x$ for all $r \in R$. Note that $R[x, f]$ is graded, because $Rx^nRx^j \subseteq Rx^{n+j} \forall \ n, j \geq 0$.

‘Frobenius actions’

A ‘Frobenius action’ on an R-module H is a left $R[x, f]$-module structure on H that extends its R-module structure.
Frobenius actions

A ‘Frobenius action’ on an R-module H is a left $R[x, f]$-module structure on H that extends its R-module structure. Then, the x-torsion-submodule is

$$\Gamma_x(H) := \{ m \in H : \exists \ n > 0 \text{ with } x^n m = 0 \}.$$
‘Frobenius actions’

A ‘Frobenius action’ on an R-module H is a left $R[x, f]$-module structure on H that extends its R-module structure. Then, the x-torsion-submodule is

$$\Gamma_x(H) := \{ m \in H : \exists \ n > 0 \text{ with } x^n m = 0 \} .$$

$\Gamma_x(H)$ is an $R[x, f]$-submodule of H.
'Frobenius actions'

A ‘Frobenius action’ on an R-module H is a left $R[x, f]$-module structure on H that extends its R-module structure. Then, the x-torsion-submodule is

$$\Gamma_x(H) := \{ m \in H : \exists \ n > 0 \ \text{with} \ x^n m = 0 \}.$$

$\Gamma_x(H)$ is an $R[x, f]$-submodule of H.

We say that H is x-torsion-free $\iff \Gamma_x(H) = 0$.
‘Frobenius actions’

A ‘Frobenius action’ on an R-module H is a left $R[x, f]$-module structure on H that extends its R-module structure. Then, the x-torsion-submodule is

$$\Gamma_x(H) := \{ m \in H : \exists \ n > 0 \text{ with } x^n m = 0 \}.$$

$\Gamma_x(H)$ is an $R[x, f]$-submodule of H.

We say that H is x-torsion-free \iff $\Gamma_x(H) = 0$.

Always $H/\Gamma_x(H)$ is x-torsion-free.
Tight closure

We denote the set of minimal prime ideals of R by $\text{Min}(R)$ and we set $R^\circ := R \setminus \bigcup_{p \in \text{Min}(R)} p$.
Tight closure

We denote the set of minimal prime ideals of R by $\text{Min}(R)$ and we set $R^\circ := R \setminus \bigcup_{p \in \text{Min}(R)} p$. Denote by $a[p^n]$ the ideal generated by all p^nth elements of a.
Tight closure

We denote the set of minimal prime ideals of R by $\text{Min}(R)$ and we set $R^\circ := R \setminus \bigcup_{p \in \text{Min}(R)} p$. Denote by $a[p^n]$ the ideal generated by all p^nth elements of a.

An element $r \in R$ belongs to a^*,
Tight closure

We denote the set of minimal prime ideals of R by $\text{Min}(R)$ and we set $R^\circ := R \setminus \bigcup_{p \in \text{Min}(R)} p$. Denote by $a^{[p^n]}$ the ideal generated by all p^nth elements of a.

An element $r \in R$ belongs to a^*, the tight closure of a.
Tight closure

We denote the set of minimal prime ideals of R by $\text{Min}(R)$ and we set $R^\circ := R \setminus \bigcup_{p \in \text{Min}(R)} p$. Denote by $a^{[p^n]}$ the ideal generated by all p^nth elements of a.

An element $r \in R$ belongs to a^*, the tight closure of a, if and only if there exists $c \in R^\circ$ such that $cr^p \in a^{[p^n]}$ for all $n \gg 0$.

Note that the element $c \in R^\circ$ is allowed to change as r varies through a^* and as a varies.
Tight closure

We denote the set of minimal prime ideals of R by $\text{Min}(R)$ and we set $R^\circ := R \setminus \bigcup_{p \in \text{Min}(R)} p$. Denote by $a[p^n]$ the ideal generated by all p^nth elements of a.

An element $r \in R$ belongs to a^*, the tight closure of a, iff $\exists c \in R^\circ$ such that $cr^p \in a[p^n]$ for all $n >> 0$.

Note that the element $c \in R^\circ$ is allowed to change as r varies through a^* and as a varies.

A test element for ideals for R is a $c' \in R^\circ$ such that, for every ideal b of R and every $r \in b^*$, we have $c'r^p \in b[p^n]$ for all $n \geq 0$.
\[R[x, f] \otimes_R M \]

\[R[x, f] \otimes_R M = (\bigoplus_{n \geq 0} Rx^n) \otimes_R M = \bigoplus_{n \geq 0} (Rx^n \otimes_R M) \]

is a graded left \(R[x, f] \)-module,
\[R[x, f] \otimes_R M \]

\[
R[x, f] \otimes_R M = \left(\bigoplus_{n \geq 0} R x^n \right) \otimes_R M = \bigoplus_{n \geq 0} (R x^n \otimes_R M)
\]

is a graded left \(R[x, f] \)-module, with

\[
x \left(\sum_{i=1}^{t} r_i x^n \otimes m_i \right) = \sum_{i=1}^{t} r_i^p x^{n+1} \otimes m_i.
\]
\[R[x, f] \otimes_R M \]

\[R[x, f] \otimes_R M = \left(\bigoplus_{n \geq 0} Rx^n \right) \otimes_R M = \bigoplus_{n \geq 0}(Rx^n \otimes_R M) \]

is a graded left \(R[x, f] \)-module, with

\[x(\sum_{i=1}^{t} r_i x^n \otimes m_i) = \sum_{i=1}^{t} r_i x^{n+1} \otimes m_i. \]

Because \(Rx^n \) is a graded component of \(R[x, f] \), it is an \((R, R)\)-bimodule, with
is a graded left $R[x, f]$-module, with

$$x \left(\sum_{i=1}^{t} r_i x^n \otimes m_i \right) = \sum_{i=1}^{t} r_i^p x^{n+1} \otimes m_i.$$

Because Rx^n is a graded component of $R[x, f]$, it is an (R, R)-bimodule, with

$$rx^n a = r a^p x^n \quad \forall r, a \in R.$$
\[R[x, f] \otimes_R M \]

\[R[x, f] \otimes_R M = \left(\bigoplus_{n \geq 0} Rx^n \right) \otimes_R M = \bigoplus_{n \geq 0} (Rx^n \otimes_R M) \]

is a graded left \(R[x, f] \)-module, with

\[x \left(\sum_{i=1}^{t} r_i x^n \otimes m_i \right) = \sum_{i=1}^{t} r_i p x^{n+1} \otimes m_i. \]

Because \(Rx^n \) is a graded component of \(R[x, f] \), it is an \((R, R)\)-bimodule, with

\[rx^n a = r a^p x^n \quad \forall \ r, a \in R. \]

So \(Rx^n \otimes_R (R/\alpha) \cong R/\alpha^{[p^n]} \).
\(R[x, f] \otimes_R (R/a) \)

As \(R[x, f] \)-modules,

\[
R[x, f] \otimes_R (R/a) = \bigoplus_{n \geq 0} (Rx^n \otimes_R (R/a)) \\
\cong \bigoplus_{n \geq 0} R/a[p^n],
\]
\[R[x, f] \otimes_R (R/\mathfrak{a}) \]

As \(R[x, f] \)-modules,

\[
R[x, f] \otimes_R (R/\mathfrak{a}) = \bigoplus_{n \geq 0} (Rx^n \otimes_R (R/\mathfrak{a}))
\]

\[
\cong \bigoplus_{n \geq 0} R/\mathfrak{a}^{[p^n]},
\]

where \(x(r + \mathfrak{a}^{[p^n]}) = r^p + \mathfrak{a}^{[p^{n+1}]} \).
\[R[x, f] \otimes_R (R/\mathfrak{a}) \]

As \(R[x, f] \)-modules,

\[
R[x, f] \otimes_R (R/\mathfrak{a}) = \bigoplus_{n \geq 0} (Rx^n \otimes_R (R/\mathfrak{a}))
\cong \bigoplus_{n \geq 0} R/\mathfrak{a}^{[p^n]},
\]

where \(x(r + \mathfrak{a}^{[p^n]}) = r^p + \mathfrak{a}^{[p^{n+1}]} \).

So a test element for ideals for \(R \) is a \(c \in R^\circ \) such that, for every ideal \(\mathfrak{b} \) of \(R \) and every \(r \in \mathfrak{b}^* \), for every \(n \geq 0 \), the element \(cx^n \) annihilates
\[
1 \otimes (r + \mathfrak{b}) \in Rx^0 \otimes_R (R/\mathfrak{b}) = (R[x, f] \otimes_R (R/\mathfrak{b}))_0.
\]
Tight closure in modules

An element $m \in M$ belongs to 0^*_M.
Tight closure in modules

An element \(m \in M \) belongs to \(0^*_M \), the tight closure of 0 in \(M \),
Tight closure in modules

An element $m \in M$ belongs to 0^*_M, the tight closure of 0 in M, $\iff \exists c \in R^\circ$ such that

$$1 \otimes m \in Rx^0 \otimes_R M = (R[x, f] \otimes_R M)_0$$

is annihilated by cx^n for all $n \gg 0$.
Tight closure in modules

An element $m \in M$ belongs to 0^*_M, the tight closure of 0 in M, $\iff \exists c \in R^\circ$ such that

$$1 \otimes m \in Rx^0 \otimes_R M = (R[x, f] \otimes_R M)_0$$

is annihilated by cx^n for all $n \gg 0$.

If N is a submodule of M, then N^*_M,
Tight closure in modules

An element $m \in M$ belongs to 0_M^*, the tight closure of 0 in M, $\iff \exists c \in R^\circ$ such that

$$1 \otimes m \in Rx^0 \otimes_R M = (R[x, f] \otimes_R M)_0$$

is annihilated by cx^n for all $n >> 0$.

If N is a submodule of M, then N_M^*, the tight closure of N in M,

Tight closure in modules

An element $m \in M$ belongs to 0^*_M, the tight closure of 0 in M, $\iff \exists c \in R^\circ$ such that

$$1 \otimes m \in Rx^0 \otimes_R M = (R[x, f] \otimes_R M)_0$$

is annihilated by cx^n for all $n \gg 0$.

If N is a submodule of M, then N^*_M, the tight closure of N in M, is the inverse image of 0^*_M under the natural epimorphism $M \longrightarrow M/N$.

– p. 7/38
Test elements for modules

A test element for modules for R is a $c \in R^\circ$ such that, for every finitely generated R-module M, for every $m \in 0^*_M$, and for every $n \geq 0$, the element cx^n annihilates $1 \otimes m \in Rx^0 \otimes R M = (R[x, f] \otimes R M)_0$.
Test elements for modules

A test element for modules for R is a $c \in R^\circ$ such that, for every finitely generated R-module M, for every $m \in 0^*_M$, and for every $n \geq 0$, the element cx^n annihilates $1 \otimes m \in Rx^0 \otimes_R M = (R[x, f] \otimes_R M)_0$.

Compare this with the definition of a test element for ideals for R as a $c \in R^\circ$ such that, for every cyclic R-module M, for every $m \in 0^*_M$, and for every $n \geq 0$, the element cx^n annihilates $1 \otimes m \in Rx^0 \otimes_R M = (R[x, f] \otimes_R M)_0$.
Test elements for modules

A test element for modules for R is a $c \in R^\circ$ such that, for every finitely generated R-module M, for every $m \in 0^*_M$, and for every $n \geq 0$, the element cx^n annihilates $1 \otimes m \in Rx^0 \otimes_R M = (R[x, f] \otimes_R M)_0$.

Compare this with the definition of a test element for ideals for R as a $c \in R^\circ$ such that, for every cyclic R-module M, for every $m \in 0^*_M$, and for every $n \geq 0$, the element cx^n annihilates $1 \otimes m \in Rx^0 \otimes_R M = (R[x, f] \otimes_R M)_0$.

Hochster and Huneke proved that, if R is reduced and excellent, then the concepts of test element for modules and test element for ideals coincide for R.
The Hochster–Huneke Existence Theorem

Theorem (M. Hochster and C. Huneke, 1994). If \mathcal{R} is a reduced algebra of finite type over an excellent local ring of characteristic p, then \mathcal{R} has a test element.
The Hochster–Huneke Existence Theorem

Theorem (M. Hochster and C. Huneke, 1994). If R is a reduced algebra of finite type over an excellent local ring of characteristic p, then R has a test element.

In fact, if $c \in R^\circ$ is such that R_c is regular, then some power of c is a test element for R.

The Hochster–Huneke Existence Theorem

Theorem (M. Hochster and C. Huneke, 1994). If R is a reduced algebra of finite type over an excellent local ring of characteristic p, then R has a test element.

In fact, if $c \in R^\circ$ is such that R_c is regular, then some power of c is a test element for R.

Indeed, if $c \in R^\circ$ is such that R_c is Gorenstein and F-regular, then some power of c is a test element for R.
Big test elements

This talk is concerned with existence of big test elements.
Big test elements

This talk is concerned with existence of big test elements.

A big test element for R is a $c \in R^\circ$ such that, for every R-module M, for every $m \in 0^*_M$, and for every $n \geq 0$, the element cx^n annihilates $1 \otimes m \in Rx^0 \otimes_R M = (R[x, f] \otimes_R M)_0$.
F-purity

R is F-pure \iff, for each R-module N,
F-purity

R is F-pure \iff, for each R-module N,

\[
\begin{align*}
N & \longrightarrow Rx \otimes_R N \\
g & \longmapsto x \otimes g
\end{align*}
\]

is injective,
F-purity

R is F-pure \iff, for each R-module N, $N \rightarrow Rx \otimes_R N$ is injective, $g \rightarrow x \otimes g$, \iff, for each R-module N,
\textbf{F-purity}

\(R \) is \(F \)-pure \iff, for each \(R \)-module \(N \),

\[
\begin{align*}
N & \longrightarrow Rx \otimes_R N \\
g & \longmapsto x \otimes g
\end{align*}
\]

is injective,

\iff, for each \(R \)-module \(N \),

\[
R[x, f] \otimes_R N = \bigoplus_{n \geq 0} Rx^n \otimes_R N
\]
is \(x \)-torsion-free.
F-purity

R is F-pure \iff, for each R-module N,

$$
\begin{align*}
N & \longrightarrow Rx \otimes_R N \\
g & \longmapsto x \otimes g
\end{align*}
$$

is injective,

\iff, for each R-module N,

$$
R[x, f] \otimes_R N = \bigoplus_{n \geq 0} Rx^n \otimes_R N
$$

is x-torsion-free.

For example, if there is a Frobenius splitting for R, that is, a \mathbb{Z}-homomorphism $\phi : R \longrightarrow R$ such that $\phi(sr^p) = \phi(s)r \ \forall \ r, s \in R \text{ and } \phi(1) = 1$, then R is F-pure.
Right and left $R[x, f]$-modules

Such a Frobenius splitting ϕ for R yields a structure as right $R[x, f]$-module on R, with $rx = \phi(r) \forall r \in R$.
Right and left $R[x, f]$-modules

Such a Frobenius splitting ϕ for R yields a structure as right $R[x, f]$-module on R, with $rx = \phi(r) \forall r \in R$.

Suppose that (R, m) is local and set $E := E_R(R/m)$.
Right and left $R[x, f]$-modules

Such a Frobenius splitting ϕ for R yields a structure as right $R[x, f]$-module on R, with $rx = \phi(r) \forall r \in R$.

Suppose that (R, m) is local and set $E := E_R(R/m)$.

In the case where R is F-finite, a right $R[x, f]$-module structure on R yields, via Matlis duality and some non-canonical calculations, a left $R[x, f]$-module structure on E;

Right and left $R[x, f]$-modules

Such a Frobenius splitting ϕ for R yields a structure as right $R[x, f]$-module on R, with $rx = \phi(r) \forall r \in R$.

Suppose that (R, m) is local and set $E := E_R(R/m)$. In the case where R is F-finite, a right $R[x, f]$-module structure on R yields, via Matlis duality and some non-canonical calculations, a left $R[x, f]$-module structure on E; and the process can be reversed in the complete case.
Right and left $R[x, f]$-modules

Such a Frobenius splitting ϕ for R yields a structure as right $R[x, f]$-module on R, with $rx = \phi(r) \forall r \in R$.

Suppose that (R, m) is local and set $E := E_R(R/m)$. In the case where R is F-finite, a right $R[x, f]$-module structure on R yields, via Matlis duality and some non-canonical calculations, a left $R[x, f]$-module structure on E; and the process can be reversed in the complete case.

In fact, in the local F-finite case, a Frobenius splitting ϕ for R as above leads to an x-torsion-free left $R[x, f]$-module structure on E.
Modification of known examples

If \(L \) is a left \(R[y, f] \)-module (where \(y \) is a variable) and \(u \in R \),
Modification of known examples

If L is a left $R[y, f]$-module (where y is a variable) and $u \in R$, then L is a left $R[x, f]$-module via $xg = uyg$ for all $g \in L$.
Modification of known examples

If L is a left $R[y, f]$-module (where y is a variable) and $u \in R$, then L is a left $R[x, f]$-module via $xg = uyg$ for all $g \in L$. Note that $x^ng = u^{\nu_n}y^ng$ for $n > 0$, where

$$\nu_n = 1 + p + p^2 + \cdots + p^{n-1}.$$
Modification of known examples

If \(L \) is a left \(R[y, f] \)-module (where \(y \) is a variable) and \(u \in R \), then \(L \) is a left \(R[x, f] \)-module via \(xg = uyg \) for all \(g \in L \). Note that \(x^n g = u^\nu_n y^n g \) for \(n > 0 \), where

\[
\nu_n = 1 + p + p^2 + \cdots + p^{n-1}.
\]

This idea can be used to prove the following.
Modification of known examples

If L is a left $R[y, f]$-module (where y is a variable) and $u \in R$, then L is a left $R[x, f]$-module via $xg = uyg$ for all $g \in L$. Note that $x^ng = u^{\nu_n}y^n g$ for $n > 0$, where

$$\nu_n = 1 + p + p^2 + \cdots + p^{n-1}.$$

This idea can be used to prove the following.

Theorem. Let (R, \mathfrak{m}) be local and F-pure. Then $E_R(R/\mathfrak{m})$ can be given the structure of an x-torsion-free left $R[x, f]$-module that extends its R-module structure.
Proof

((R, \mathfrak{m}) is F-pure.) Reduce to the case where R is complete, and write $R = S/b$ where (S, \mathfrak{n}) is a complete regular local ring of characteristic p and $0 \neq b \neq S$.
Proof

\((\mathcal{R}, \mathfrak{m})\) is \(F\)-pure.) Reduce to the case where \(R \) is complete, and write \(R = S / \mathfrak{b} \) where \((S, \mathfrak{n})\) is a complete regular local ring of characteristic \(p \) and \(0 \neq \mathfrak{b} \neq S \).

Set \(E := E_S(S/\mathfrak{n}) \) and note that \((0 :_E \mathfrak{b}) = E_R(R/\mathfrak{m})\).
Proof

((R, m) is F-pure.) Reduce to the case where R is complete, and write $R = S/b$ where (S, n) is a complete regular local ring of characteristic p and $0 \neq b \neq S$.

Set $E := E_S(S/n)$ and note that $(0 :_E b) = E_R(R/m)$.

Since $E \cong H_{n}^{\dim S}(S)$, there is a natural left $S[y, f]$-module structure on E (where y is a variable).
Proof

\(((R, m) \text{ is } F\text{-pure.})\) Reduce to the case where \(R\) is complete, and write \(R = S/b\) where \((S, \mathfrak{n})\) is a complete regular local ring of characteristic \(p\) and \(0 \neq b \neq S\).

Set \(E := E_S(S/\mathfrak{n})\) and note that \((0 :_E b) = E_R(R/m)\).

Since \(E \cong H_{\mathfrak{n}}^{\dim S}(S)\), there is a natural left \(S[y, f]\)-module structure on \(E\) (where \(y\) is a variable).

The idea is to choose a \(u \in S\) so that, for the left \(S[x, f]\)-module structure on \(E\) for which \(xe = uye\) for all \(e \in E\), the subset \((0 :_E b)\) becomes an \(S[x, f]\)-submodule, and therefore a left \(R[x, f]\)-module.
Proof

\(((R, m) \text{ is } F\text{-pure.}) \text{ Reduce to the case where } R \text{ is complete, and write } R = S/b \text{ where } (S, n) \text{ is a complete regular local ring of characteristic } p \text{ and } 0 \neq b \neq S.\)

Set \(E := E_S(S/n)\) and note that \((0 :_E b) = E_R(R/m)\).

Since \(E \cong H^\dim S_n(S)\), there is a natural left \(S[y, f]\)-module structure on \(E\) (where \(y\) is a variable). The idea is to choose a \(u \in S\) so that, for the left \(S[x, f]\)-module structure on \(E\) for which \(xe =uye\) for all \(e \in E\), the subset \((0 :_E b)\) becomes an \(S[x, f]\)-submodule, and therefore a left \(R[x, f]\)-module. Moreover, we want to do this in such a way that \((0 :_E b)\) is \(x\)-torsion-free.
How do we choose \(u \)?

It turns out that \((0 :_E \mathfrak{b})\) is an \(\mathcal{S}[x, f] \)-submodule (for the structure in which \(xe = uye \) for all \(e \in E \)) if and only if \(u \in (\mathfrak{b}^p :_S \mathfrak{b}) \).
How do we choose u?

It turns out that $(0 :_E \mathfrak{b})$ is an $S[x, f]$-submodule (for the structure in which $xe = uye$ for all $e \in E$) if and only if $u \in (\mathfrak{b}^p :_S \mathfrak{b})$. So we need to choose a good $u \in (\mathfrak{b}^p :_S \mathfrak{b})$.
How do we choose u?

It turns out that $(0 :_E \mathfrak{b})$ is an $S[x, f]$-submodule (for the structure in which $xe = uye$ for all $e \in E$) if and only if $u \in (\mathfrak{b}^p :_S \mathfrak{b})$. So we need to choose a good $u \in (\mathfrak{b}^p :_S \mathfrak{b})$. We use

Fedder’s Theorem (1983). (Recall that \mathfrak{b} is a proper ideal of the complete regular local ring (S, \mathfrak{n}).) The ring $R = S/\mathfrak{b}$ is F-pure $\iff (\mathfrak{b}^p :_S \mathfrak{b}) \not\subseteq \mathfrak{n}^p$.
How do we choose u?

It turns out that $(0 :_E \mathfrak{b})$ is an $S[x, f]$-submodule (for the structure in which $xe = uye$ for all $e \in E$) if and only if $u \in (\mathfrak{b}^p :_S \mathfrak{b})$. So we need to choose a good $u \in (\mathfrak{b}^p :_S \mathfrak{b})$. We use Fedder’s Theorem (1983). (Recall that \mathfrak{b} is a proper ideal of the complete regular local ring (S, \mathfrak{n}).) The ring $R = S/\mathfrak{b}$ is F-pure $\iff (\mathfrak{b}^p :_S \mathfrak{b}) \subsetneq \mathfrak{n}^p$.

We choose $u \in (\mathfrak{b}^p :_S \mathfrak{b}) \setminus \mathfrak{n}^p$. This yields a left $R[x, f]$-module structure on $(0 :_E \mathfrak{b}) = E_R(R/m)$.
How do we choose \(u \)?

It turns out that \((0 :_E b)\) is an \(S[x, f]\)-submodule (for the structure in which \(xe = uye \) for all \(e \in E \)) if and only if \(u \in (b^{[p]} :_S b) \). So we need to choose a good \(u \in (b^{[p]} :_S b) \). We use

Fedder’s Theorem (1983). (Recall that \(b \) is a proper ideal of the complete regular local ring \((S, n)\).) The ring \(R = S/b \) is \(F \)-pure \(\iff (b^{[p]} :_S b) \not\subseteq n^{[p]} \).

We choose \(u \in (b^{[p]} :_S b) \setminus n^{[p]} \). This yields a left \(R[x, f] \)-module structure on \((0 :_E b) = E_R(R/m)\).

The choice of \(u \) outside \(p^{[p]} \) for every prime ideal \(p \) of \(S \) ensures that \(E_R(R/m) \) is \(x \)-torsion-free. \(\Box \)
A strategy

Suppose that \((R, m)\) is local and \(E := E_R(R/m)\) has a structure as an \(x\)-torsion-free left \(R[x, f]\)-module that extends its \(R\)-module structure.
A strategy

Suppose that \((R, \mathfrak{m})\) is local and \(E := E_R(R/\mathfrak{m})\) has a structure as an \(x\)-torsion-free left \(R[x, f]\)-module that extends its \(R\)-module structure.

In order to draw conclusions about the existence of big test elements for \(R\), we are going to consider an arbitrary \(R\)-module \(M\), and embed (homogeneously, and over \(R[x, f]\)) the graded left \(R[x, f]\)-module \(R[x, f] \otimes_R M\) into an \(x\)-torsion-free graded left \(R[x, f]\)-module \(K\) that has some properties in common with \(E\).
A strategy

Suppose that \((R, m)\) is local and \(E := E_R(R/m)\) has a structure as an \(x\)-torsion-free left \(R[x, f]\)-module that extends its \(R\)-module structure.

In order to draw conclusions about the existence of big test elements for \(R\), we are going to consider an arbitrary \(R\)-module \(M\), and embed (homogeneously, and over \(R[x, f]\)) the graded left \(R[x, f]\)-module \(R[x, f] \otimes_R M\) into an \(x\)-torsion-free graded left \(R[x, f]\)-module \(K\) that has some properties in common with \(E\).

The theory of graded annihilators, \(E\)-special \(R\)-ideals and special annihilator submodules will help with this.
Special annihilator submodules

The graded two-sided ideals of $R[x, f]$ are precisely the subsets of the form $\bigoplus_{n \geq 0} a_n x^n$, where

$$a_0 \subseteq a_1 \subseteq \cdots \subseteq a_n \subseteq \cdots$$

is an ascending (and so ultimately stationary) sequence of ideals of R.
Special annihilator submodules

The graded two-sided ideals of $R[x, f]$ are precisely the subsets of the form $\bigoplus_{n \geq 0} a_n x^n$, where

$$a_0 \subseteq a_1 \subseteq \cdots \subseteq a_n \subseteq \cdots$$

is an ascending (and so ultimately stationary) sequence of ideals of R.

An $R[x, f]$-submodule of a left $R[x, f]$-module H is said to be a special annihilator submodule of H if it has the form

$$\text{ann}_H(\mathcal{A}) = \{ h \in H : \theta h = 0 \text{ for all } \theta \in \mathcal{A} \}$$

for some graded two-sided ideal \mathcal{A} of $R[x, f]$.

Special annihilator submodules

The graded two-sided ideals of $R[x,f]$ are precisely the subsets of the form $\bigoplus_{n \geq 0} a_n x^n$, where

$$a_0 \subseteq a_1 \subseteq \cdots \subseteq a_n \subseteq \cdots$$

is an ascending (and so ultimately stationary) sequence of ideals of R.

An $R[x,f]$-submodule of a left $R[x,f]$-module H is said to be a **special annihilator submodule of H** if it has the form

$$\text{ann}_H(\mathcal{A}) = \{ h \in H : \theta h = 0 \text{ for all } \theta \in \mathcal{A} \}$$

for some **graded** two-sided ideal \mathcal{A} of $R[x,f]$.

We shall use $\mathcal{A}(H)$ to denote the set of special annihilator submodules of H.
Graded annihilators
Graded annihilators

The graded annihilator $\text{gr-ann}_{R[x,f]} H$ of a left $R[x,f]$-module H is the largest graded two-sided ideal of $R[x,f]$ that annihilates H.
Graded annihilators

The graded annihilator $\text{gr-ann}_{R[x,f]} H$ of a left $R[x,f]$-module H is the largest graded two-sided ideal of $R[x,f]$ that annihilates H. If H is x-torsion-free, then

$$\text{gr-ann}_{R[x,f]} H = bR[x,f] = \bigoplus_{n \geq 0} bx^n$$

for some radical ideal b of R.
Graded annihilators

The graded annihilator $\text{gr-ann}_{R[x,f]} H$ of a left $R[x,f]$-module H is the largest graded two-sided ideal of $R[x,f]$ that annihilates H. If H is x-torsion-free, then

$$\text{gr-ann}_{R[x,f]} H = \mathfrak{b} R[x,f] = \bigoplus_{n \geq 0} \mathfrak{b} x^n$$

for some radical ideal \mathfrak{b} of R. (In fact, $\mathfrak{b} = (0 :_R H)$.)
Graded annihilators

The graded annihilator $\text{gr-ann}_{R[x,f]} H$ of a left $R[x,f]$-module H is the largest graded two-sided ideal of $R[x,f]$ that annihilates H. If H is x-torsion-free, then

$$\text{gr-ann}_{R[x,f]} H = bR[x,f] = \bigoplus_{n \geq 0} bx^n$$

for some radical ideal b of R. (In fact, $b = (0 :_R H)$.) In this x-torsion-free case, we shall use $\mathcal{I}(H)$ to denote the set of H-special R-ideals, that is, the (necessarily radical) ideals c of R for which $cR[x,f]$ is the graded annihilator of an $R[x,f]$-submodule of H.
Graded annihilators

The graded annihilator $\text{gr-ann}_{R[x,f]} H$ of a left $R[x,f]$-module H is the largest graded two-sided ideal of $R[x,f]$ that annihilates H. If H is x-torsion-free, then

$$\text{gr-ann}_{R[x,f]} H = \mathfrak{b} R[x,f] = \bigoplus_{n \geq 0} \mathfrak{b} x^n$$

for some radical ideal \mathfrak{b} of R. (In fact, $\mathfrak{b} = (0 :_R H)$.) In this x-torsion-free case, we shall use $\mathcal{I}(H)$ to denote the set of H-special R-ideals, that is, the (necessarily radical) ideals \mathfrak{c} of R for which $\mathfrak{c} R[x,f]$ is the graded annihilator of an $R[x,f]$-submodule of H. In fact, $\mathcal{I}(H)$ is closed under taking arbitrary intersections and primary (prime!) components.
The basic correspondence

Let H be an x-torsion-free left $R[x, f]$-module.
The basic correspondence

Let H be an x-torsion-free left $R[x, f]$-module. There is an order-reversing bijection

$$\Delta : \mathcal{A}(H) \longrightarrow \mathcal{I}(H) \quad \left\{\begin{array}{c}
N \quad \longmapsto \quad (0 :_RN) \\
\end{array}\right.$$

The basic correspondence

Let H be an x-torsion-free left $R[x, f]$-module. There is an order-reversing bijection

$$\Delta : \mathcal{A}(H) \longrightarrow \mathcal{I}(H)$$

$$N \longmapsto (0 :_R N)$$

whose inverse is given by

$$\Delta^{-1} : \mathcal{I}(H) \longrightarrow \mathcal{A}(H)$$

$$b \longmapsto \text{ann}_H(b R[x, f])$$.
The basic correspondence

Let H be an x-torsion-free left $R[x, f]$-module. There is an order-reversing bijection

\[
\Delta : \mathcal{A}(H) \to \mathcal{I}(H) \\
N \mapsto (0 :_R N)
\]

whose inverse is given by

\[
\Delta^{-1} : \mathcal{I}(H) \to \mathcal{A}(H) \\
b \mapsto \text{ann}_H(bR[x, f])
\]

If, in addition, H is Artinian as R-module, then $\mathcal{I}(H)$ is finite,
The basic correspondence

Let H be an x-torsion-free left $R[x, f]$-module. There is an order-reversing bijection

$$
\Delta : \mathcal{A}(H) \longrightarrow \mathcal{I}(H) \bigg\{ \\
N \quad \longmapsto \quad (0 : R N)
\bigg\}
$$

whose inverse is given by

$$
\Delta^{-1} : \mathcal{I}(H) \longrightarrow \mathcal{A}(H) \bigg\{ \\
b \quad \longmapsto \quad \text{ann}_H(b R[x, f])
\bigg\}.
$$

If, in addition, H is Artinian as R-module, then $\mathcal{I}(H)$ is finite, so that $\mathcal{A}(H)$ is finite also.
Consequences of the basic correspondence
Consequences of the basic correspondence

Theorem (—-, 2005). Let H be an x-torsion-free left $R[x, f]$-module for which $\mathcal{I}(H)$ is finite.
Consequences of the basic correspondence

Theorem (—-, 2005). Let H be an x-torsion-free left $R[x, f]$-module for which $\mathcal{I}(H)$ is finite. Then there is a smallest ideal in $\mathcal{I}(H)$ of positive height, $\mathfrak{b}(H)$ say. ($\mathfrak{b} := \mathfrak{b}(H)$ is the intersection of the prime members of $\mathcal{I}(H)$ of positive height; if there are none, then $\mathfrak{b} = R$.)
Consequences of the basic correspondence

Theorem (—-, 2005). Let H be an x-torsion-free left $R[x, f]$-module for which $\mathcal{I}(H)$ is finite. Then there is a smallest ideal in $\mathcal{I}(H)$ of positive height, $\mathfrak{b}(H)$ say. ($\mathfrak{b} := \mathfrak{b}(H)$ is the intersection of the prime members of $\mathcal{I}(H)$ of positive height; if there are none, then $\mathfrak{b} = R$.)

Let $g \in H$. Then the following statements are equivalent:
Consequences of the basic correspondence

Theorem (—-, 2005). Let H be an x-torsion-free left $R[x, f]$-module for which $\mathcal{I}(H)$ is finite. Then there is a smallest ideal in $\mathcal{I}(H)$ of positive height, $\mathfrak{b}(H)$ say. ($\mathfrak{b} := \mathfrak{b}(H)$ is the intersection of the prime members of $\mathcal{I}(H)$ of positive height; if there are none, then $\mathfrak{b} = R$.)

Let $g \in H$. Then the following statements are equivalent:

(i) g is annihilated by $\mathfrak{b}R[x, f] = \bigoplus_{n \geq 0} \mathfrak{b}x^n$,

Consequences of the basic correspondence

Theorem (—-, 2005). Let H be an x-torsion-free left $R[x, f]$-module for which $\mathcal{I}(H)$ is finite. Then there is a smallest ideal in $\mathcal{I}(H)$ of positive height, $\mathfrak{b}(H)$ say. ($\mathfrak{b} := \mathfrak{b}(H)$ is the intersection of the prime members of $\mathcal{I}(H)$ of positive height; if there are none, then $\mathfrak{b} = R$.)

Let $g \in H$. Then the following statements are equivalent:

(i) g is annihilated by $\mathfrak{b}R[x, f] = \bigoplus_{n \geq 0} \mathfrak{b}x^n$, that is, $c'x^ng = 0$ for all $c' \in \mathfrak{b}$ and all $n \geq 0$;
Consequences of the basic correspondence

Theorem (—-, 2005). Let H be an x-torsion-free left $R[x, f]$-module for which $\mathcal{I}(H)$ is finite. Then there is a smallest ideal in $\mathcal{I}(H)$ of positive height, $\mathfrak{b}(H)$ say. ($\mathfrak{b} := \mathfrak{b}(H)$ is the intersection of the prime members of $\mathcal{I}(H)$ of positive height; if there are none, then $\mathfrak{b} = R$.)

Let $g \in H$. Then the following statements are equivalent:

(i) g is annihilated by $\mathfrak{b}R[x, f] = \bigoplus_{n \geq 0} \mathfrak{b}x^n$, that is, $c'x^ng = 0$ for all $c' \in \mathfrak{b}$ and all $n \geq 0$;

(ii) $\exists \ c \in R^\circ \cap \mathfrak{b}$ such that $cx^ng = 0$ \forall $n >> 0$;
Consequences of the basic correspondence

Theorem (—-, 2005). Let H be an x-torsion-free left $R[x, f]$-module for which $\mathcal{I}(H)$ is finite. Then there is a smallest ideal in $\mathcal{I}(H)$ of positive height, $\mathfrak{b}(H)$ say. ($\mathfrak{b} := \mathfrak{b}(H)$ is the intersection of the prime members of $\mathcal{I}(H)$ of positive height; if there are none, then $\mathfrak{b} = R$.)

Let $g \in H$. Then the following statements are equivalent:

(i) g is annihilated by $\mathfrak{b}R[x, f] = \bigoplus_{n \geq 0} \mathfrak{b}x^n$, that is, $c'x^ng = 0$ for all $c' \in \mathfrak{b}$ and all $n \geq 0$;

(ii) $\exists c \in R^\circ \cap \mathfrak{b}$ such that $cx^ng = 0 \forall n >> 0$;

(iii) $\exists c \in R^\circ$ such that $cx^ng = 0 \forall n >> 0$.
Proof of (iii) ⇒ (i)
Proof of (iii) \implies (i)

Let \(c \in R^\circ \) be such that \(cx^n g = 0 \ \forall \ n \geq n_0 \).
Proof of (iii) ⇒ (i)

Let $c \in R^\circ$ be such that $cx^ng = 0 \\forall \ n \geq n_0$.

Then $g \in \text{ann}_H(\bigoplus_{n\geq n_0} Rcx^n) \in A(H)$. Let $a \in \mathcal{I}(H)$ correspond to $\text{ann}_H(\bigoplus_{n\geq n_0} Rcx^n) \in A(H)$,
Proof of (iii) ⇒ (i)

Let $c \in R^o$ be such that $cx^n g = 0 \ \forall \ n \geq n_0$.

Then $g \in \text{ann}_H(\bigoplus_{n \geq n_0} Rcx^n) \in \mathcal{A}(H)$. Let $a \in \mathcal{I}(H)$ correspond to $\text{ann}_H(\bigoplus_{n \geq n_0} Rcx^n) \in \mathcal{A}(H)$, so that

$$aR[x, f] = \text{gr-ann}_{R[x, f]}(\text{ann}_H(\bigoplus_{n \geq n_0} Rcx^n)).$$
Proof of \((iii) \Rightarrow (i)\)

Let \(c \in R^\circ\) be such that \(cx^ng = 0 \ \forall \ n \geq n_0\). Then \(g \in \text{ann}_H(\bigoplus_{n \geq n_0} Rcx^n) \in A(H)\). Let \(a \in I(H)\) correspond to \(\text{ann}_H(\bigoplus_{n \geq n_0} Rcx^n) \in A(H)\), so that

\[aR[x, f] = \text{gr-ann}_{R[x,f]}(\text{ann}_H(\bigoplus_{n \geq n_0} Rcx^n)). \]

Since \(c \in a\), \(\text{ht} \ a \geq 1\), so that \(b \subseteq a\).
Proof of (iii) ⇒ (i)

Let $c \in R^\circ$ be such that $cx^ng = 0 \ \forall \ n \geq n_0$.

Then $g \in \operatorname{ann}_H(\bigoplus_{n \geq n_0} Rcx^n) \in \mathcal{A}(H)$. Let $a \in \mathcal{I}(H)$ correspond to $\operatorname{ann}_H(\bigoplus_{n \geq n_0} Rcx^n) \in \mathcal{A}(H)$, so that

$$aR[x, f] = \operatorname{gr-ann}_{R[x, f]}(\operatorname{ann}_H(\bigoplus_{n \geq n_0} Rcx^n)).$$

Since $c \in a$, $\operatorname{ht} a \geq 1$, so that $b \subseteq a$. Therefore

$$g \in \operatorname{ann}_H(\bigoplus_{n \geq n_0} Rcx^n)$$

$$= \operatorname{ann}_H(aR[x, f]) \subseteq \operatorname{ann}_H(bR[x, f]). \quad \square$$
A strategy for \((R, \mathfrak{m})\) local & \(F\)-pure

Step 1. Set \(E = E_R(R/\mathfrak{m})\) and put an \(x\)-torsion-free left \(R[x, f]\)-module structure on \(E\).
A strategy for \((R, \mathfrak{m})\) local & \(F\)-pure

Step 1. Set \(E = E_R(R/\mathfrak{m})\) and put an \(x\)-torsion-free left \(R[x, f]\)-module structure on \(E\). Since \(E\) is Artinian as \(R\)-module, \(\mathcal{I}(E)\) is finite;
A strategy for \((R, \mathfrak{m})\) local & \(F\)-pure

Step 1. Set \(E = E_R(R/\mathfrak{m})\) and put an \(x\)-torsion-free left \(R[x, f]\)-module structure on \(E\). Since \(E\) is Artinian as \(R\)-module, \(\mathcal{I}(E)\) is finite; let \(\mathfrak{b} := \mathfrak{b}(E)\) be the smallest ideal in \(\mathcal{I}(E)\) of positive height.
A strategy for \((R, \mathfrak{m})\) local & \(F\)-pure

Step 1. Set \(E = E_R(R/\mathfrak{m})\) and put an \(x\)-torsion-free left \(R[x, f]\)-module structure on \(E\). Since \(E\) is Artinian as \(R\)-module, \(I(E)\) is finite; let \(\mathfrak{b} := \mathfrak{b}(E)\) be the smallest ideal in \(I(E)\) of positive height.

Step 2. Show that, for an arbitrary \(R\)-module \(M\), \(\exists\) an \(x\)-torsion-free graded left \(R[x, f]\)-module \(K(M)\) such that \(I(K(M)) = I(E)\), finite (so that \(\mathfrak{b}(K(M)) = \mathfrak{b}\)), and a homogeneous \(R[x, f]\)-monomorphism \(R[x, f] \otimes_R M \rightarrow K(M)\).
A strategy for \((R, \mathfrak{m})\) local & \(F\)-pure

Step 1. Set \(E = E_R(R/\mathfrak{m})\) and put an \(x\)-torsion-free left \(R[x, f]\)-module structure on \(E\). Since \(E\) is Artinian as \(R\)-module, \(\mathcal{I}(E)\) is finite; let \(\mathfrak{b} := \mathfrak{b}(E)\) be the smallest ideal in \(\mathcal{I}(E)\) of positive height.

Step 2. Show that, for an arbitrary \(R\)-module \(M\), \(\exists\) an \(x\)-torsion-free graded left \(R[x, f]\)-module \(K(M)\) such that \(\mathcal{I}(K(M)) = \mathcal{I}(E)\), finite (so that \(\mathfrak{b}(K(M)) = \mathfrak{b}\)), and a homogeneous \(R[x, f]\)-monomorphism \(R[x, f] \otimes_R M \longrightarrow K(M)\).

Step 3. Deduce that, if \(m \in 0^*_M\), so that \(\exists\ c \in R^\circ\) such that \(cx^n(1 \otimes m) = 0\) in \(R[x, f] \otimes_R M\) for all \(n > > 0\),
A strategy for \((R, \mathfrak{m})\) local & \(F\)-pure

Step 1. Set \(E = E_R(R/\mathfrak{m})\) and put an \(x\)-torsion-free left \(R[x, f]\)-module structure on \(E\). Since \(E\) is Artinian as \(R\)-module, \(\mathcal{I}(E)\) is finite; let \(\mathfrak{b} := \mathfrak{b}(E)\) be the smallest ideal in \(\mathcal{I}(E)\) of positive height.

Step 2. Show that, for an arbitrary \(R\)-module \(M\), \(\exists\) an \(x\)-torsion-free graded left \(R[x, f]\)-module \(K(M)\) such that \(\mathcal{I}(K(M)) = \mathcal{I}(E)\), finite (so that \(\mathfrak{b}(K(M)) = \mathfrak{b}\)), and a homogeneous \(R[x, f]\)-monomorphism \(R[x, f] \otimes_R M \rightarrow K(M)\).

Step 3. Deduce that, if \(m \in 0^*_M\), so that \(\exists\ c \in R^\circ\) such that \(cx^n(1 \otimes m) = 0\) in \(R[x, f] \otimes_R M\) for all \(n >> 0\), then \(c'x^n(1 \otimes m) = 0\) in \(R[x, f] \otimes_R M\) for all \(n \geq 0\) and all \(c' \in \mathfrak{b}\).
A strategy for \((R, \mathfrak{m})\) local & F-pure

Step 1. Set \(E = E_R(R/\mathfrak{m})\) and put an \(x\)-torsion-free left \(R[x, f]\)-module structure on \(E\). Since \(E\) is Artinian as \(R\)-module, \(\mathcal{I}(E)\) is finite; let \(\mathfrak{b} := \mathfrak{b}(E)\) be the smallest ideal in \(\mathcal{I}(E)\) of positive height.

Step 2. Show that, for an arbitrary \(R\)-module \(M\), \(\exists\) an \(x\)-torsion-free graded left \(R[x, f]\)-module \(K(M)\) such that \(\mathcal{I}(K(M)) = \mathcal{I}(E)\), finite (so that \(\mathfrak{b}(K(M)) = \mathfrak{b}\)), and a homogeneous \(R[x, f]\)-monomorphism \(R[x, f] \otimes_R M \rightarrow K(M)\).

Step 3. Deduce that, if \(m \in 0^*_M\), so that \(\exists\ c \in R^\circ\) such that \(cx^n(1 \otimes m) = 0\) in \(R[x, f] \otimes_R M\) for all \(n \gg 0\), then \(c'x^n(1 \otimes m) = 0\) in \(R[x, f] \otimes_R M\) for all \(n \geq 0\) and all \(c' \in \mathfrak{b}\). Conclude that every element of \(\mathfrak{b} \cap R^\circ\) is a big test element for \(R\).
The graded companion

For Step 2, starting with an x-torsion-free left $R[x, f]$-module structure on E,
The graded companion

For Step 2, starting with an x-torsion-free left $R[x, f]$-module structure on E, we shall construct from E various x-torsion-free graded left $R[x, f]$-modules L with $\mathcal{I}(L) = \mathcal{I}(E)$.
The graded companion

For Step 2, starting with an x-torsion-free left $R[x, f]$-module structure on E, we shall construct from E various x-torsion-free graded left $R[x, f]$-modules L with $\mathcal{I}(L) = \mathcal{I}(E)$.

For all $n \geq 0$, set $E_n := E$. Then the graded companion of E is the left $R[x, f]$-module $	ilde{E} := \bigoplus_{n \geq 0} E_n$, where the result of multiplying $h_n \in E_n = E$ on the left by x is the element $xh_n \in E_{n+1} = E$.
The graded companion

For Step 2, starting with an x-torsion-free left $R[x, f]$-module structure on E, we shall construct from E various x-torsion-free graded left $R[x, f]$-modules L with $\mathcal{I}(L) = \mathcal{I}(E)$.

For all $n \geq 0$, set $E_n := E$. Then the graded companion of E is the left $R[x, f]$-module

$\tilde{E} := \bigoplus_{n \geq 0} E_n$, where the result of multiplying $h_n \in E_n = E$ on the left by x is the element $xh_n \in E_{n+1} = E$.

For each graded two-sided ideal \mathfrak{B} of $R[x, f]$, we have $\text{ann}_{\tilde{E}} \mathfrak{B} = \text{ann}_E \mathfrak{B}$.
The graded companion

For Step 2, starting with an \(x \)-torsion-free left \(R[x, f] \)-module structure on \(E \), we shall construct from \(E \) various \(x \)-torsion-free graded left \(R[x, f] \)-modules \(L \) with \(\mathcal{I}(L) = \mathcal{I}(E) \).

For all \(n \geq 0 \), set \(E_n := E \). Then the graded companion of \(E \) is the left \(R[x, f] \)-module \(\tilde{E} := \bigoplus_{n \geq 0} E_n \), where the result of multiplying \(h_n \in E_n = E \) on the left by \(x \) is the element \(xh_n \in E_{n+1} = E \).

For each graded two-sided ideal \(\mathfrak{B} \) of \(R[x, f] \), we have \(\text{ann}_{\tilde{E}} \mathfrak{B} = \text{ann}_E \mathfrak{B} \). Thus (\(\tilde{E} \) is \(x \)-torsion-free and) \(\mathcal{I}(\tilde{E}) = \mathcal{I}(E) \).
Graded products

Let \(\left(H^{(\lambda)} = \bigoplus_{n \in \mathbb{Z}} H_n^{(\lambda)} \right)_{\lambda \in \Lambda} \) be a non-empty family of \(\mathbb{Z} \)-graded left \(R[x, f] \)-modules.
Graded products

Let \(\left(H^{(\lambda)} = \bigoplus_{n \in \mathbb{Z}} H^{(\lambda)}_n \right) \) be a non-empty family of \(\mathbb{Z} \)-graded left \(R[x, f] \)-modules.

For each \(n \in \mathbb{Z} \), set \(H_n := \prod_{\lambda \in \Lambda} H^{(\lambda)}_n \).
Graded products

Let \(\left(H^{(\lambda)} = \bigoplus_{n \in \mathbb{Z}} H^{(\lambda)}_n \right)_{\lambda \in \Lambda} \) be a non-empty family of \(\mathbb{Z} \)-graded left \(R[x, f] \)-modules.

For each \(n \in \mathbb{Z} \), set \(H_n := \prod_{\lambda \in \Lambda} H^{(\lambda)}_n \).

Then the \(R \)-module

\[
H := \bigoplus_{n \in \mathbb{Z}} H_n = \bigoplus_{n \in \mathbb{Z}} \left(\prod_{\lambda \in \Lambda} H^{(\lambda)}_n \right)
\]
Graded products

Let \(\left(H^{(\lambda)} = \bigoplus_{n \in \mathbb{Z}} H_n^{(\lambda)} \right) \) be a non-empty family of \(\mathbb{Z} \)-graded left \(R[x, f] \)-modules.

For each \(n \in \mathbb{Z} \), set \(H_n := \prod_{\lambda \in \Lambda} H_n^{(\lambda)} \).

Then the \(R \)-module

\[
H := \bigoplus_{n \in \mathbb{Z}} H_n = \bigoplus_{n \in \mathbb{Z}} \left(\prod_{\lambda \in \Lambda} H_n^{(\lambda)} \right)
\]

has a natural structure as a (\(\mathbb{Z} \)-graded) left \(R[x, f] \)-module in which

\[
x(h_n^{(\lambda)})_{\lambda \in \Lambda} = (x h_n^{(\lambda)})_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} H_{n+1}^{(\lambda)}
\]

for all \((h_n^{(\lambda)})_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} H_n^{(\lambda)} \).
Graded products, continued

Since H is the product of $(H^{(\lambda)})_{\lambda \in \Lambda}$ in the category of \mathbb{Z}-graded left $R[x, f]$-modules and homogeneous $R[x, f]$-homomorphisms (of degree 0), we shall denote the module H by $\prod_{\lambda \in \Lambda}^{' } H^{(\lambda)}$, and refer to it as the graded product of the $H^{(\lambda)}$.
Graded products, continued

Since H is the product of $(H^{(\lambda)})_{\lambda \in \Lambda}$ in the category of \mathbb{Z}-graded left $R[x, f]$-modules and homogeneous $R[x, f]$-homomorphisms (of degree 0), we shall denote the module H by $\prod'_{\lambda \in \Lambda} H^{(\lambda)}$, and refer to it as the graded product of the $H^{(\lambda)}$.

If $H^{(\lambda)}$ is x-torsion-free for all $\lambda \in \Lambda$, then $\prod'_{\lambda \in \Lambda} H^{(\lambda)}$ is also x-torsion-free.
Graded products, continued

Since H is the product of $(H^{(\lambda)})_{\lambda \in \Lambda}$ in the category of \mathbb{Z}-graded left $R[x, f]$-modules and homogeneous $R[x, f]$-homomorphisms (of degree 0), we shall denote the module H by $\prod'_{\lambda \in \Lambda} H^{(\lambda)}$, and refer to it as the graded product of the $H^{(\lambda)}$.

If $H^{(\lambda)}$ is x-torsion-free for all $\lambda \in \Lambda$, then $\prod'_{\lambda \in \Lambda} H^{(\lambda)}$ is also x-torsion-free. In that x-torsion-free case, if $\mathcal{I}(H^{(\lambda)}) = \mathcal{I}(E)$ for all $\lambda \in \Lambda$, then $\mathcal{I} \left(\prod'_{\lambda \in \Lambda} H^{(\lambda)} \right) = \mathcal{I}(E)$ also.
Extensions

Let \(b \in \mathbb{Z} \) and \(W = \bigoplus_{n \geq b} W_n \) be a \(\mathbb{Z} \)-graded left \(R[x, f] \)-module; let \((g_i)_{i \in I} \) be a family of arbitrary elements of \(W_b \).
Extensions

Let $b \in \mathbb{Z}$ and $W = \bigoplus_{n \geq b} W_n$ be a \mathbb{Z}-graded left $R[x, f]$-module; let $(g_i)_{i \in I}$ be a family of arbitrary elements of W_b. Let V denote the free R-module $\bigoplus_{i \in I} R_i$, where $R_i = R$ for all $i \in I$.
Extensions

Let \(b \in \mathbb{Z} \) and \(W = \bigoplus_{n \geq b} W_n \) be a \(\mathbb{Z} \)-graded left \(R[x, f] \)-module; let \((g_i)_{i \in I} \) be a family of arbitrary elements of \(W_b \). Let \(V \) denote the free \(R \)-module \(\bigoplus_{i \in I} R_i \), where \(R_i = R \) for all \(i \in I \). Let

\[
\begin{align*}
 f : & V & \longrightarrow & V \\
 \quad (r_i)_{i \in I} & \longmapsto (r_i^p)_{i \in I}
\end{align*}
\]

be the Frobenius map.
Extensions

Let $b \in \mathbb{Z}$ and $W = \bigoplus_{n \geq b} W_n$ be a \mathbb{Z}-graded left $R[x, f]$-module; let $(g_i)_{i \in I}$ be a family of arbitrary elements of W_b. Let V denote the free R-module $\bigoplus_{i \in I} R_i$, where $R_i = R$ for all $i \in I$. Let

$$f : V \rightarrow V \begin{cases} (r_i)_{i \in I} & \mapsto (r_i^p)_{i \in I} \end{cases}$$

be the Frobenius map. Set

$$K := \left\{ (r_i)_{i \in I} \in V : \sum_{i \in I} r_i g_i = 0 \right\},$$

an R-submodule of V.
Extensions, continued

Let $h \in \mathbb{Z}$ with $h > 0$.
Extensions, continued

Let $h \in \mathbb{Z}$ with $h > 0$. Then the graded left $R[x, f]$-module

$$(V/f^{-h}(K)) \oplus \cdots \oplus (V/f^{-1}(K)) \oplus W_b \oplus W_{b+1} \oplus \cdots,$$
Extensions, continued

Let $h \in \mathbb{Z}$ with $h > 0$. Then the graded left $R[x, f]$-module

$$(V/f^{-h}(K)) \oplus \cdots \oplus (V/f^{-1}(K)) \oplus W_b \oplus W_{b+1} \oplus \cdots,$$

which has W as a graded $R[x, f]$-submodule.
Extensions, continued

Let $h \in \mathbb{Z}$ with $h > 0$. Then the graded left $R[x, f]$-module

$$(V/f^{-h}(K)) \oplus \cdots \oplus (V/f^{-1}(K)) \oplus W_b \oplus W_{b+1} \oplus \cdots,$$

which has W as a graded $R[x, f]$-submodule and is such that (for all $v = (r_i)_{i \in I} \in V$)

$$x(v + f^{-j}(K)) = \begin{cases}
 f(v) + f^{-(j-1)}(K) & \text{if } h \geq j \geq 2, \\
 \sum_{i \in I} r_i g_i & \text{if } j = 1,
\end{cases}$$
Extensions, continued

Let $h \in \mathbb{Z}$ with $h > 0$. Then the graded left $R[x, f]$-module

$$(V/f^{-h}(K)) \oplus \cdots \oplus (V/f^{-1}(K)) \oplus W_b \oplus W_{b+1} \oplus \cdots,$$

which has W as a graded $R[x, f]$-submodule and is such that (for all $v = (r_i)_{i \in I} \in V$)

$$x(v + f^{-j}(K)) = \begin{cases} f(v) + f^{-(j-1)}(K) & \text{if } h \geq j \geq 2, \\ \sum_{i \in I} r_i^p g_i & \text{if } j = 1, \end{cases}$$

is called the h-place extension of W by $(g_i)_{i \in I}$, and denoted by $\text{exten}(W; (g_i)_{i \in I}; h)$.
Extensions, continued

The action of x is such that, if $w'_j \in V / f^{-j}(K)$ with $h \geq j \geq 1$, then $xw'_j = 0 \iff w'_j = 0$.
Extensions, continued

The action of x is such that, if $w'_j \in V/f^{-j}(K)$ with $h \geq j \geq 1$, then $xw'_j = 0 \iff w'_j = 0$. This has the consequences that, if W is x-torsion-free, then so too is $\text{exten}(W; (g_i)_{i \in I}; h)$,
Extensions, continued

The action of x is such that, if $w_j' \in V/f^{-j}(K)$ with $h \geq j \geq 1$, then $xw_j' = 0 \iff w_j' = 0$. This has the consequences that, if W is x-torsion-free, then so too is $\text{exten}(W; (g_i)_{i \in I}; h)$, and, in that x-torsion-free case, $\mathcal{I}(W) = \mathcal{I}(\text{exten}(W; (g_i)_{i \in I}; h))$,.
Extensions, continued

The action of x is such that, if $w'_j \in V/f^{-j}(K)$ with $h \geq j \geq 1$, then $xw'_j = 0 \iff w'_j = 0$. This has the consequences that, if W is x-torsion-free, then so too is $\text{exten}(W; (g_i)_{i \in I}; h)$, and, in that x-torsion-free case, $I(W) = I(\text{exten}(W; (g_i)_{i \in I}; h))$, so that if $I(W) = I(E)$, then $I(\text{exten}(W; (g_i)_{i \in I}; h)) = I(E)$ too.
Preservation of x-torsion-freeness & $\mathcal{I}(\bullet)$

We have now seen that the properties of being x-torsion-free and having set of special R-ideals equal to the set of E-special R-ideals $\mathcal{I}(E)$ are preserved under the operations of
Preservation of x-torsion-freeness & $\mathcal{I}(\bullet)$

We have now seen that the properties of being x-torsion-free and having set of special R-ideals equal to the set of E-special R-ideals $\mathcal{I}(E)$ are preserved under the operations of

- passing to graded companions,
Preservation of x-torsion-freeness & $\mathcal{I}(\bullet)$

We have now seen that the properties of being x-torsion-free and having set of special R-ideals equal to the set of E-special R-ideals $\mathcal{I}(E)$ are preserved under the operations of

- passing to graded companions,
- taking graded products,
Preservation of x-torsion-freeness & $\mathcal{I}(\bullet)$

We have now seen that the properties of being x-torsion-free and having set of special R-ideals equal to the set of E-special R-ideals $\mathcal{I}(E)$ are preserved under the operations of

- passing to graded companions,
- taking graded products, and
- forming extensions;
Preservation of x-torsion-freeness & $\mathcal{I}(\bullet)$

We have now seen that the properties of being x-torsion-free and having set of special R-ideals equal to the set of E-special R-ideals $\mathcal{I}(E)$ are preserved under the operations of

- passing to graded companions,
- taking graded products, and
- forming extensions;

they are also preserved under

- shifting.
The Embedding Theorem

Theorem. Let E be an injective cogenerator of R with a left $R[x, f]$-module structure.
The Embedding Theorem

Theorem. Let E be an injective cogenerator of R with a left $R[x, f]$-module structure. Let M be an R-module.
The Embedding Theorem

Theorem. Let E be an injective cogenerator of R with a left $R[x, f]$-module structure. Let M be an R-module. Then there is a left $R[x, f]$-module $K(M)$, graded by the set \mathbb{N}_0 of non-negative integers, formed as the graded product of a family of extensions of shifts of graded products of copies of the graded companion \tilde{E} of E,
The Embedding Theorem

Theorem. Let E be an injective cogenerator of R with a left $R[x, f]$-module structure. Let M be an R-module. Then there is a left $R[x, f]$-module $K(M)$, graded by the set \mathbb{N}_0 of non-negative integers, formed as the graded product of a family of extensions of shifts of graded products of copies of the graded companion \tilde{E} of E, and a homogeneous $R[x, f]$-monomorphism

$$
\nu : R[x, f] \otimes_R M = \bigoplus_{n \geq 0} (Rx^n \otimes_R M) \longrightarrow K(M).
$$
The Embedding Theorem

Theorem. Let E be an injective cogenerator of R with a left $R[x, f]$-module structure. Let M be an R-module. Then there is a left $R[x, f]$-module $K(M)$, graded by the set \mathbb{N}_0 of non-negative integers, formed as the graded product of a family of extensions of shifts of graded products of copies of the graded companion \widetilde{E} of E, and a homogeneous $R[x, f]$-monomorphism

$$\nu : R[x, f] \otimes_R M = \bigoplus_{n \geq 0} (Rx^n \otimes_R M) \longrightarrow K(M).$$

If E is x-torsion-free, then so too are $K(M)$ and $R[x, f] \otimes_R M$.
The Embedding Theorem

Theorem. Let E be an injective cogenerator of R with a left $R[x, f]$-module structure. Let M be an R-module. Then there is a left $R[x, f]$-module $K(M)$, graded by the set \mathbb{N}_0 of non-negative integers, formed as the graded product of a family of extensions of shifts of graded products of copies of the graded companion \tilde{E} of E, and a homogeneous $R[x, f]$-monomorphism

$$\nu : R[x, f] \otimes_R M = \bigoplus_{n \geq 0} (Rx^n \otimes_R M) \longrightarrow K(M).$$

If E is x-torsion-free, then so too are $K(M)$ and $R[x, f] \otimes_R M$, and then

$$\mathcal{I}(R[x, f] \otimes_R M) \subseteq \mathcal{I}(K(M)) = \mathcal{I}(E) \quad \forall \ M.$$
Some applications of the Embedding Theorem

Theorem. Suppose that \((R, \mathfrak{m})\) is local. Then \(R\) is \(F\)-pure if and only if the \(R\)-module structure on \(E_R(R/\mathfrak{m})\) can be extended to an \(x\)-torsion-free left \(R[x, f]\)-module structure.
Some applications of the Embedding Theorem

Theorem. Suppose that \((R, \mathfrak{m})\) is local. Then \(R\) is \(F\)-pure if and only if the \(R\)-module structure on \(E_R(R/\mathfrak{m})\) can be extended to an \(x\)-torsion-free left \(R[x, f]\)-module structure.

Theorem. Suppose that \((R, \mathfrak{m})\) is local and \(F\)-pure. Then \(R\) has a big tight closure test element, even if it is not excellent.
Some applications of the Embedding Theorem

Theorem. Suppose that \((R, \mathfrak{m})\) is local. Then \(R\) is \(F\)-pure if and only if the \(R\)-module structure on \(E_R(R/\mathfrak{m})\) can be extended to an \(x\)-torsion-free left \(R[x, f]\)-module structure.

Theorem. Suppose that \((R, \mathfrak{m})\) is local and \(F\)-pure. Then \(R\) has a big tight closure test element, even if it is not excellent.

Theorem. \((R\) is not assumed to be local here.) Suppose that \(R\) is excellent and \(F\)-pure. Then \(R\) has a big tight closure test element.
Some applications of the Embedding Theorem

Theorem. Suppose that \((R, m)\) is local. Then \(R\) is \(F\)-pure if and only if the \(R\)-module structure on \(E_R(R/m)\) can be extended to an \(x\)-torsion-free left \(R[x, f]\)-module structure.

Theorem. Suppose that \((R, m)\) is local and \(F\)-pure. Then \(R\) has a big tight closure test element, even if it is not excellent.

Theorem. \((R\) is not assumed to be local here.) Suppose that \(R\) is excellent and \(F\)-pure. Then \(R\) has a big tight closure test element. In fact, if \(c \in R^\circ\) is such that \(R_c\) is regular, then \(c\) itself is a big test element for \(R\).
The non-F-pure case

The methods described in this talk are particularly well suited for use when R is F-pure, because then there are many naturally occurring x-torsion-free left $R[x, f]$-modules.
The non-F-pure case

The methods described in this talk are particularly well suited for use when R is F-pure, because then there are many naturally occurring x-torsion-free left $R[x, f]$-modules.

However, the methods can be refined for use in some non-F-pure cases.
The non-F-pure case

The methods described in this talk are particularly well suited for use when R is F-pure, because then there are many naturally occurring x-torsion-free left $R[x, f]$-modules.

However, the methods can be refined for use in some non-F-pure cases. For example, when (R, m) is complete, local and reduced, it is possible to put a left $R[x, f]$-module structure on $E := E_R(R/m)$ that is sufficiently non-trivial so that $\text{ht}(0 :_R \Gamma_x(E)) > 0$.
The non-F-pure case

The methods described in this talk are particularly well suited for use when R is F-pure, because then there are many naturally occurring x-torsion-free left $R[x, f]$-modules.

However, the methods can be refined for use in some non-F-pure cases. For example, when (R, \mathfrak{m}) is complete, local and reduced, it is possible to put a left $R[x, f]$-module structure on $E := E_R(R/\mathfrak{m})$ that is sufficiently non-trivial so that $\text{ht}(0 :_{R} \Gamma_x(E)) > 0$.

One can use such an $R[x, f]$-module structure on E, in conjunction with the Embedding Theorem, to prove an existence theorem for big test elements when R is reduced, excellent and local.
More applications of the Embedding Theorem

Theorem. Suppose that \((R, m)\) is local, excellent and reduced. Then \(R\) has a big test element. In fact, \(\exists n > 0\) such that, \(\forall c \in R^o\) for which \(R_c\) is regular, \(c^n\) is a big test element for \(R\).
More applications of the Embedding Theorem

Theorem. Suppose that \((R, m)\) is local, excellent and reduced. Then \(R\) has a big test element. In fact, \(\exists n > 0\) such that, \(\forall c \in R^\circ\) for which \(R_c\) is regular, \(c^n\) is a big test element for \(R\).

Theorem. (\(R\) is not assumed to be local here.) Each big test element \(c\) for \(R\) is automatically locally stable, that is \(c/1 \in R_p\) is a big test element for \(R_p\) for all \(p \in \text{Spec}(R)\).
More applications of the Embedding Theorem

Theorem. Suppose that \((R, m)\) is local, excellent and reduced. Then \(R\) has a big test element. In fact, \(\exists n > 0\) such that, \(\forall c \in \mathcal{R}_n\) for which \(\mathcal{R}_c\) is regular, \(c^n\) is a big test element for \(R\).

Theorem. (\(R\) is not assumed to be local here.) Each big test element \(c\) for \(R\) is automatically locally stable, that is \(c/1 \in \mathcal{R}_p\) is a big test element for \(\mathcal{R}_p\) for all \(p \in \text{Spec}(R)\).

Theorem. Assume that \(R\) is excellent (but not necessarily local). Then each big test element \(c\) for \(R\) is automatically completely stable, that is \(c/1 \in \mathcal{R}_p\) is a big test element for \(\mathcal{R}_p\) for all \(p \in \text{Spec}(R)\).
Proof of the Embedding Theorem

Begin with an injective cogenerator E of R with an $R[x, f]$-module structure.
Proof of the Embedding Theorem

Begin with an injective cogenerator E of R with an $R[x, f]$-module structure.

Suppose $M \neq 0$; set $J := M \setminus \{0\}$.
Proof of the Embedding Theorem

Begin with an injective cogenerator E of R with an $R[x, f]$-module structure.

Suppose $M \neq 0$; set $J := M \setminus \{0\}$. For each $m \in J$ there exists an R-homomorphism $\phi_m : M \rightarrow E$ such that $\phi_m(m) \neq 0$.
Proof of the Embedding Theorem

Begin with an injective cogenerator E of R with an $R[\bar{x}, f]$-module structure.

Suppose $M \neq 0$; set $J := M \setminus \{0\}$. For each $m \in J$ there exists an R-homomorphism $\phi_m : M \longrightarrow E$ such that $\phi_m(m) \neq 0$. For each $j \in J$, set $E^{(j)} := E$.
Proof of the Embedding Theorem

Begin with an injective cogenerator E of R with an $R[x, f]$-module structure.

Suppose $M \neq 0$; set $J := M \setminus \{0\}$. For each $m \in J$ there exists an R-homomorphism $\phi_m : M \to E$ such that $\phi_m(m) \neq 0$. For each $j \in J$, set $E^{(j)} := E$. Define $(\lambda^{(0)})_0 : M \to \prod_{j \in J} E^{(j)}$ by $(\lambda^{(0)})_0(g) = (\phi_m(g))_{m \in J}$ for all $g \in M$.

Proof of the Embedding Theorem

Begin with an injective cogenerator E of R with an $R[x, f]$-module structure.

Suppose $M \neq 0$; set $J := M \setminus \{0\}$. For each $m \in J$ there exists an R-homomorphism $\phi_m : M \rightarrow E$ such that $\phi_m(m) \neq 0$. For each $j \in J$, set $E^{(j)} := E$. Define $(\lambda^{(0)})_0 : M \rightarrow \prod_{j \in J} E^{(j)}$ by $(\lambda^{(0)})_0(g) = (\phi_m(g))_{m \in J}$ for all $g \in M$. Then $(\lambda^{(0)})_0$ is an R-monomorphism.
Proof the Embedding Theorem, continued

For each $j \in J$, set $H^{(j)} := \tilde{E}$;
Proof the Embedding Theorem, continued

For each \(j \in J \), set \(H^{(j)} := \tilde{E} \); set \(L^{(0)} := \prod'_{j \in J} H^{(j)} \), so that \((L^{(0)})_0 = \prod_{j \in J} E^{(j)} \).
Proof the Embedding Theorem, continued

For each \(j \in J \), set \(H^{(j)} := \tilde{E} \); set \(L^{(0)} := \prod'_{j \in J} H^{(j)} \), so that \((L^{(0)})_0 = \prod_{j \in J} E^{(j)} \). Identify \(M \) with \(Rx^0 \otimes_R M \).
Proof the Embedding Theorem, continued

For each $j \in J$, set $H^{(j)} := \tilde{E}$; set $L^{(0)} := \prod'_{j \in J} H^{(j)}$, so that $(L^{(0)})_0 = \prod_{j \in J} E^{(j)}$. Identify M with $R x^0 \otimes_R M$.

We can then define, for each $n > 0$, an R-hom.

$(\lambda^{(0)})_n : R x^n \otimes_R M \longrightarrow L^{(0)}_n$ for which

$$(\lambda^{(0)})_n(r x^n \otimes m) = r x^n (\lambda^{(0)})_0(m) \forall r \in R, m \in M.$$
Proof the Embedding Theorem, continued

For each $j \in J$, set $H^{(j)} := \tilde{E}$; set $L^{(0)} := \prod'_{j \in J} H^{(j)}$, so that $(L^{(0)})_0 = \prod_{j \in J} E^{(j)}$. Identify M with $R x^0 \otimes_R M$.

We can then define, for each $n > 0$, an R-hom.

$$(\lambda^{(0)})_n : Rx^n \otimes_R M \longrightarrow L_n^{(0)}$$

for which

$$(\lambda^{(0)})_n(r x^n \otimes m) = r x^n (\lambda^{(0)})_0(m) \ \forall \ r \in R, m \in M.$$ Then

$$\bigoplus_{i \geq 0} (\lambda^{(0)})_i : \bigoplus_{i \geq 0} (Rx^i \otimes_R M) \longrightarrow \prod'_{j \in J} H^{(j)}$$
Proof the Embedding Theorem, continued

For each \(j \in J \), set \(H^{(j)} := \tilde{E} \); set \(L^{(0)} := \prod'_{j \in J} H^{(j)} \), so that \((L^{(0)})_0 = \prod_{j \in J} E^{(j)} \). Identify \(M \) with \(Rx^0 \otimes_R M \).

We can then define, for each \(n > 0 \), an \(R \)-hom. \((\lambda^{(0)})_n : Rx^n \otimes_R M \rightarrow L^{(0)}_n \) for which
\[(\lambda^{(0)})_n(rx^n \otimes m) = rx^n (\lambda^{(0)})_0(m) \quad \forall r \in R, m \in M.\]

Then
\[
\bigoplus_{i \geq 0} (\lambda^{(0)})_i : \bigoplus_{i \geq 0} (Rx^i \otimes_R M) \rightarrow \prod'_{j \in J} H^{(j)}
\]

is a homogeneous \(R[x, f] \)-homomorphism \(\lambda^{(0)} : R[x, f] \otimes_R M \rightarrow L^{(0)} \) for which \((\lambda^{(0)})_0 \) is a monomorphism.
The \((\lambda(0))^n\) \((n > 0)\) might not be monomorphic!

Choose \(n > 0\), and apply the last slide to \(R x^n \otimes_R M\):
The \((\lambda^{(0)})_n \ (n > 0)\) might not be monomorphic!

Choose \(n > 0\), and apply the last slide to \(Rx^n \otimes_R M\): there is a family \((G^{(j,n)})_{j \in Y_n}\) of graded left \(R[x, f]\)-modules, all equal to \(\tilde{E}\), and a homogeneous \(R[x, f]\)-homomorphism

\[
R[x, f] \otimes_R (Rx^n \otimes_R M) \longrightarrow \prod_{j \in Y_n} \ 'G^{(j,n)}
\]

which is monomorphomic in degree 0.
The \((\lambda^{(0)})_n (n > 0)\) might not be monomorphic!

Choose \(n > 0\), and apply the last slide to \(Rx^n \otimes_R M\): there is a family \((G^{(j,n)})_{j \in Y_n}\) of graded left \(R[x, f]\)-modules, all equal to \(\tilde{E}\), and a homogeneous \(R[x, f]\)-homomorphism

\[
R[x, f] \otimes_R (Rx^n \otimes_R M) \longrightarrow \prod_{j \in Y_n} 'G^{(j,n)}
\]

which is monomorphinc in degree 0. Apply the shift \((\cdot)(-n)\):
The \((\lambda^{(0)})_n (n > 0)\) might not be monomorphic!

Choose \(n > 0\), and apply the last slide to \(R x^n \otimes_R M\): there is a family \((G^{(j,n)})_{j \in Y_n}\) of graded left

\(R[x, f]\)-modules, all equal to \(\tilde{E}\), and a homogeneous

\(R[x, f]\)-homomorphism

\[
R[x, f] \otimes_R (R x^n \otimes_R M) \longrightarrow \prod_{j \in Y_n} \ ' G^{(j,n)}
\]

which is monomorphemic in degree 0. Apply the shift

\((\bullet)(-n)\): we get a homogeneous \(R[x, f]\)-hom.

\[
\zeta^{(n)} : \bigoplus_{j \geq n} (R x^j \otimes_R M) \longrightarrow \left(\prod_{j \in Y_n} \ ' G^{(j,n)} \right)(-n) =: Q^{(n)}
\]

which is monomorphemic in degree \(n\).
But we need a map from $\bigoplus_{j \geq 0}(Rx^j \otimes_R M)$!

Let $\{m_i : i \in I\}$ be a generating set for M;
But we need a map from $\bigoplus_{j \geq 0}(Rx^j \otimes_R M)$!

Let \(\{m_i : i \in I\} \) be a generating set for \(M \); set
\[
g_i = (\zeta^{(n)})_n(x^n \otimes m_i) \forall i \in I.
\]
But we need a map from $\bigoplus_{j\geq 0}(Rx^j \otimes_R M)$!

Let $\{m_i : i \in I\}$ be a generating set for M; set $g_i = (\zeta^{(n)})_n(x^n \otimes m_i) \forall i \in I$. One can extend $\zeta^{(n)}$ to a homogeneous $R[x,f]$-homomorphism

$$\lambda^{(n)} : \bigoplus_{j\geq 0}(Rx^j \otimes_R M) \longrightarrow \text{exten}(Q^{(n)}; (g_i)_{i\in I}; n) =: L^{(n)},$$

such that $\lambda^{(n)}$ is monomorphic in degree n.
But we need a map from $\bigoplus_{j \geq 0} (Rx^j \otimes_R M)$!

Let $\{m_i : i \in I\}$ be a generating set for M; set $g_i = (\zeta^{(n)})_n (x^n \otimes m_i) \forall i \in I$. One can extend $\zeta^{(n)}$ to a homogeneous $R[x, f]$-homomorphism

$$\lambda^{(n)} : \bigoplus_{j \geq 0} (Rx^j \otimes_R M) \longrightarrow \text{exten}(Q^{(n)}; (g_i)_{i \in I}; n) =: L^{(n)},$$

such that $\lambda^{(n)}$ is monomorphically in degree n. Note that, if E is x-torsion-free, then so too is $L^{(n)}$ and $\mathcal{I}(L^{(n)}) = \mathcal{I}(E) \forall n \geq 0$.
Use the graded product of the $L^{(n)}$ ($n \geq 0$)

There is a homogeneous $R[x, f]$-homomorphism

$$\nu = \bigoplus_{j \geq 0} \nu_j : R[x, f] \otimes_R M \longrightarrow \prod_{n \geq 0} \overset{'}{L}^{(n)} =: K(M)$$

such that $\nu_j(\xi_j) = ((\lambda^{(n)})_j(\xi_j))_{n \geq 0}$ for all $j \geq 0$ and $\xi_j \in Rx^j \otimes_R M$.
Use the graded product of the $L^{(n)} (n \geq 0)$

There is a homogeneous $R[x, f]$-homomorphism

$$\nu = \bigoplus_{j \geq 0} \nu_j : R[x, f] \otimes_R M \longrightarrow \prod_{n \geq 0}' L^{(n)} =: K(M)$$

such that $\nu_j(\xi_j) = (\lambda^{(n)}_j(\xi_j))_{n \geq 0}$ for all $j \geq 0$ and $\xi_j \in R x^j \otimes_R M$.

For each $j \geq 0$, the map $(\lambda^{(j)}_j)_j$ is a monomorphism;
Use the graded product of the $L^{(n)}$ ($n \geq 0$)

There is a homogeneous $R[x, f]$-homomorphism

$$
\nu = \bigoplus_{j \geq 0} \nu_j : R[x, f] \otimes_R M \rightarrow \prod_{n \geq 0} L^{(n)} =: K(M)
$$

such that $\nu_j(\xi_j) = \left((\lambda^{(n)})_j(\xi_j) \right)_{n \geq 0}$ for all $j \geq 0$ and $\xi_j \in R x^j \otimes_R M$.
For each $j \geq 0$, the map $(\lambda^{(j)})_j$ is a monomorphism; hence ν_j is a monomorphism.
Use the graded product of the $L^{(n)}$ ($n \geq 0$)

There is a homogeneous $R[x, f]$-homomorphism

$$
\nu = \bigoplus_{j \geq 0} \nu_j : R[x, f] \otimes_R M \longrightarrow \prod_{n \geq 0} L^{(n)} =: K(M)
$$

such that $\nu_j(\xi_j) = ((\lambda^{(n)})_j(\xi_j))_{n \geq 0}$ for all $j \geq 0$ and $\xi_j \in R x^j \otimes_R M$.

For each $j \geq 0$, the map $(\lambda^{(j)})_j$ is a monomorphism; hence ν_j is a monomorphism. Hence ν is an $R[x, f]$-monomorphism.
Use the graded product of the $L^{(n)}$ ($n \geq 0$)

There is a homogeneous $R[x, f]$-homomorphism

$$\nu = \bigoplus_{j \geq 0} \nu_j : R[x, f] \otimes_R M \rightarrow \prod_{n \geq 0} L^{(n)} =: K(M)$$

such that $\nu_j(\xi_j) = ((\lambda^{(n)})_j(\xi_j))_{n \geq 0}$ for all $j \geq 0$ and $\xi_j \in Rx^j \otimes_R M$.

For each $j \geq 0$, the map $(\lambda^{(j)})_j$ is a monomorphism; hence ν_j is a monomorphism. Hence ν is an $R[x, f]$-monomorphism.

Note that, if E is x-torsion-free, then so too is $K(M)$ and $\mathcal{I}(K(M)) = \mathcal{I}(E)$. □