SOME TOPICS ON F-THRESHOLDS

KEI-ICHI WATANABE

(This is a joint work with C. Huneke and S. Takagi.)

The notion of F-threshold $c^J(a)$ is introduced by Mustaţă for pairs of ideals in a Noetherian ring of characteristic $p > 0$ with $a \subset \sqrt{J}$.

Our main concern with this notion is the following conjecture.

Conjecture 0.1. Let (A, \mathfrak{m}) be a Noetherian local ring of characteristic $p > 0$ of dimension d, J be a parameter ideal of A and a be a \mathfrak{a} primary ideal. Then

$$e(a) \geq \left(\frac{d}{c^J(a)} \right)^d e(J)?$$

where $e(J)$ (resp. $e(a)$) denotes the multiplicity of J (resp. a).

This conjecture is true if $A = \oplus_{n \geq 0} A_n$ is a graded ring over Artinian local ring A_0 and both J and a are generated by full system of homogeneous parameters.

Also, we discuss when the equality holds in our conjecture.

Recently, the relation of F-threshold with the F-jumping number is found.

Definition 0.2. For every ideal $J \subseteq A$ such that $a \subseteq \sqrt{J}$, the F-jumping number $\text{fjn}^J(a)$ of a with respect to J is defined to be

$$\text{fjn}^J(a) = \inf\{t \geq 0 \mid \tau(a^t) \subseteq J\}.$$

Where $\tau(a^t)$ is the generalization of test ideal defined by N.Hara and K.-i. Yoshida. This notion is known to have strong connection with multiplier ideals in algebraic varieties over a field of characteristic 0. Then our F-threshold has the following characterization.

Theorem 0.3. Suppose that A is an equidimensional local ring of characteristic $p > 0$ and J is an ideal generated by a full system of parameters for A. Assume in addition that A is Gorenstein and A_P is F-rational for all prime ideals P not containing a. Then

$$\text{fjn}^J(a) = c^J(a).$$

In terms of this characterization, our conjecture on multiplicity and F-thresholds is equivalent to the following conjecture on core of ideals.

Conjecture 0.4. Let (A, \mathfrak{m}) be a 2-dimensional F-rational Gorenstein ring, let J be a parameter ideal in A and a be an integrally closed \mathfrak{m} primary ideal. If $J \supset core(a)$, then $e(a) \geq e(J)$?
References

